scholarly journals Parameterizing the competition between homogeneous and heterogeneous freezing in cirrus cloud formation – monodisperse ice nuclei

2008 ◽  
Vol 8 (4) ◽  
pp. 15665-15698 ◽  
Author(s):  
D. Barahona ◽  
A. Nenes

Abstract. We present a parameterization of cirrus cloud formation that computes the ice crystal number and size distribution under the presence of homogeneous and heterogeneous freezing. The parameterization is very simple to apply and is derived from the analytical solution of the cloud parcel equations, assuming that the ice nuclei population is monodisperse and chemically homogeneous. In addition to the ice distribution, an analytical expression is provided for the limiting ice nuclei number concentration that suppresses ice formation from homogeneous freezing. The parameterization is evaluated against a detailed numerical parcel model, and reproduces numerical simulations over a wide range of conditions with an average error of 6±33%.

2009 ◽  
Vol 9 (2) ◽  
pp. 369-381 ◽  
Author(s):  
D. Barahona ◽  
A. Nenes

Abstract. We present a parameterization of cirrus cloud formation that computes the ice crystal number and size distribution under the presence of homogeneous and heterogeneous freezing. The parameterization is very simple to apply and is derived from the analytical solution of the cloud parcel equations, assuming that the ice nuclei population is monodisperse and chemically homogeneous. In addition to the ice distribution, an analytical expression is provided for the limiting ice nuclei number concentration that suppresses ice formation from homogeneous freezing. The parameterization is evaluated against a detailed numerical parcel model, and reproduces numerical simulations over a wide range of conditions with an average error of 6±33%. The parameterization also compares favorably against other formulations that require some form of numerical integration.


2009 ◽  
Vol 9 (16) ◽  
pp. 5933-5948 ◽  
Author(s):  
D. Barahona ◽  
A. Nenes

Abstract. This study presents a comprehensive ice cloud formation parameterization that computes the ice crystal number, size distribution, and maximum supersaturation from precursor aerosol and ice nuclei. The parameterization provides an analytical solution of the cloud parcel model equations and accounts for the competition effects between homogeneous and heterogeneous freezing, and, between heterogeneous freezing in different modes. The diversity of heterogeneous nuclei is described through a nucleation spectrum function which is allowed to follow any form (i.e., derived from classical nucleation theory or from observations). The parameterization reproduces the predictions of a detailed numerical parcel model over a wide range of conditions, and several expressions for the nucleation spectrum. The average error in ice crystal number concentration was −2.0±8.5% for conditions of pure heterogeneous freezing, and, 4.7±21% when both homogeneous and heterogeneous freezing were active. The formulation presented is fast and free from requirements of numerical integration.


2009 ◽  
Vol 9 (3) ◽  
pp. 10957-11004 ◽  
Author(s):  
D. Barahona ◽  
A. Nenes

Abstract. This study presents a comprehensive ice cloud formation parameterization that computes the ice crystal number, size distribution, and maximum supersaturation from precursor aerosol and ice nuclei with any size distribution and chemical composition. The parameterization provides an analytical solution of the cloud parcel model equations and accounts for the competition effects between homogeneous and heterogeneous freezing, and, between heterogeneous freezing in different modes. The diversity of heterogeneous nuclei is described through a nucleation spectrum function which is allowed to follow any form (i.e., derived from classical nucleation theory or from empirical observations). The parameterization reproduced the predictions of a detailed numerical parcel model over a wide range of conditions, and several expressions for the nucleation spectrum. The average error in ice crystal number concentration was −2.0±8.5% for conditions of pure heterogeneous freezing, and, 4.7±21% when both homogeneous and heterogeneous freezing were active. Apart from its rigor, excellent performance and versatility, the formulation is extremely fast and free from requirements of numerical integration.


2010 ◽  
Vol 10 (12) ◽  
pp. 5449-5474 ◽  
Author(s):  
M. Wang ◽  
J. E. Penner

Abstract. A statistical cirrus cloud scheme that accounts for mesoscale temperature perturbations is implemented in a coupled aerosol and atmospheric circulation model to better represent both subgrid-scale supersaturation and cloud formation. This new scheme treats the effects of aerosol on cloud formation and ice freezing in an improved manner, and both homogeneous freezing and heterogeneous freezing are included. The scheme is able to better simulate the observed probability distribution of relative humidity compared to the scheme that was implemented in an older version of the model. Heterogeneous ice nuclei (IN) are shown to decrease the frequency of occurrence of supersaturation, and improve the comparison with observations at 192 hPa. Homogeneous freezing alone can not reproduce observed ice crystal number concentrations at low temperatures (<205 K), but the addition of heterogeneous IN improves the comparison somewhat. Increases in heterogeneous IN affect both high level cirrus clouds and low level liquid clouds. Increases in cirrus clouds lead to a more cloudy and moist lower troposphere with less precipitation, effects which we associate with the decreased convective activity. The change in the net cloud forcing is not very sensitive to the change in ice crystal concentrations, but the change in the net radiative flux at the top of the atmosphere is still large because of changes in water vapor. Changes in the magnitude of the assumed mesoscale temperature perturbations by 25% alter the ice crystal number concentrations and the net radiative fluxes by an amount that is comparable to that from a factor of 10 change in the heterogeneous IN number concentrations. Further improvements on the representation of mesoscale temperature perturbations, heterogeneous IN and the competition between homogeneous freezing and heterogeneous freezing are needed.


2007 ◽  
Vol 7 (16) ◽  
pp. 4203-4227 ◽  
Author(s):  
B. Kärcher ◽  
O. Möhler ◽  
P. J. DeMott ◽  
S. Pechtl ◽  
F. Yu

Abstract. Cirrus cloud formation is believed to be dominated by homogeneous freezing of supercooled liquid aerosols in many instances. Heterogeneous ice nuclei such as mineral dust, metallic, and soot particles, and some crystalline solids within partially soluble aerosols are suspected to modulate cirrus properties. Among those, the role of ubiquitous soot particles is perhaps the least understood. Because aviation is a major source of upper tropospheric soot particles, we put emphasis on ice formation in dispersing aircraft plumes. The effect of aircraft soot on cirrus formation in the absence of contrails is highly complex and depends on a wide array of emission and environmental parameters. We use a microphysical-chemical model predicting the formation of internally mixed, soot-containing particles up to two days after emission, and suggest two principal scenarios: high concentrations of original soot emissions could slightly increase the number of ice crystals; low concentrations of particles originating from coagulation of emitted soot with background aerosols could lead to a significant reduction in ice crystal number. Both scenarios assume soot particles to be moderate ice nuclei relative to cirrus formation by homogeneous freezing in the presence of few efficient dust ice nuclei. A critical discussion of laboratory experiments reveals that the ice nucleation efficiency of soot particles depends strongly on their source, and, by inference, on atmospheric aging processes. Mass and chemistry of soluble surface coatings appear to be crucial factors. Immersed soot particles tend to be poor ice nuclei, some bare ones nucleate ice at low supersaturations. However, a fundamental understanding of these studies is lacking, rendering extrapolations to atmospheric conditions speculative. In particular, we cannot yet decide which indirect aircraft effect scenario is more plausible, and options suggested to mitigate the problem remain uncertain.


2011 ◽  
Vol 11 (11) ◽  
pp. 29601-29646 ◽  
Author(s):  
D. Barahona

Abstract. This work presents a novel formulation of the ice nucleation spectrum, i.e. the function relating the ice crystal concentration to cloud formation conditions and aerosol properties. The new formulation relies on a statistical view of the ice nucleation process and explicitly accounts for the dependency of the ice crystal concentration on temperature, supersaturation, cooling rate, and particle size, and, in the case of heterogeneous ice nucleation, on the distributions of particle area and surface composition. The new formulation is used to generate ice nucleation parameterizations for the homogeneous freezing of cloud droplets and the heterogeneous deposition ice nucleation on dust and soot ice nuclei. For homogeneous freezing, it was found that by increasing the dispersion in the droplet volume distribution the fraction of supercooled droplets in the population increases. For heterogeneous ice nucleation it was found that ice nucleation on efficient ice nuclei (IN) shows features consistent with the singular hypothesis (characterized by a lack of temporal dependency of the ice nucleation spectrum) whereas less efficient IN tend to display stochastic behavior. Analysis of empirical nucleation spectra suggested that inferring the aerosol heterogeneous ice nucleation properties from measurements of the onset supersaturation and temperature may carry significant error as the variability in ice nucleation properties within the aerosol population is not accounted for. This work provides a simple and rigorous ice nucleation framework were theoretical predictions, laboratory measurements and field campaign data can be reconciled, and that is suitable for application in atmospheric modeling studies.


2013 ◽  
Vol 13 (3) ◽  
pp. 7811-7869 ◽  
Author(s):  
L. A. Ladino ◽  
O. Stetzer ◽  
U. Lohmann

Abstract. This manuscript compiles both theoretical and experimental information on contact freezing with the aim to better understand this potentially important but still not well quantified heterogeneous freezing mode. There is no complete theory that describes contact freezing and how the energy barrier has to be overcome to nucleate an ice crystal by contact freezing. Experiments on contact freezing indicate that it can initiate ice formation at the highest temperatures. A difference in the freezing temperatures between contact and immersion freezing has been found using different instrumentation and different ice nuclei. There is a lack of data on collision rates in most of the reported data, which inhibits a quantitative calculation of the freezing efficiencies. Thus, new or modified instrumentation to study this heterogeneous freezing mode in the laboratory and in the field are needed. Important questions concerning contact freezing and its potential role for ice cloud formation and climate are also summarized.


2007 ◽  
Vol 7 (3) ◽  
pp. 7843-7905 ◽  
Author(s):  
B. Kärcher ◽  
O. Möhler ◽  
P. J. DeMott ◽  
S. Pechtl ◽  
F. Yu

Abstract. Cirrus cloud formation is believed to be domi\\-nated by homogeneous freezing of supercooled liquid aerosols in many instances. Heterogeneous ice nuclei such as mineral dust, metallic, and soot particles, and some crystalline solids within partially soluble aerosols are suspected to modulate cirrus properties. Among those, the role of ubiqui\\-tous soot particles is perhaps the least understood. Because aviation is a major source of upper tropospheric soot particles, we put emphasis on ice formation in dispersing aircraft plumes. The effect of aircraft soot on cirrus formation in the absence of contrails is highly complex and depends on a wide array of emission and environmental parameters. We use a microphysical-chemical model predicting the formation of internally mixed, soot-containing particles up to two days after emission, and suggest two principal scenarios, both assuming soot particles to be moderate ice nuclei relative to cirrus formation by homogeneous freezing in the presence of few efficient dust ice nuclei: high concentrations of original soot emissions could slightly increase the number of ice crystals; low concentrations of particles originating from coagulation of emitted soot with background aerosols could lead to a significant reduction in ice crystal number. A critical discussion of laboratory experiments reveals that the ice nucleation efficiency of soot particles depends strongly on their source, and, by inference, on atmospheric aging processes. Mass and chemistry of soluble surface coatings appear to be crucial factors. Immersed soot particles tend to be poor ice nuclei, some bare ones nucleate ice at low supersaturations. However, a fundamental understanding of these studies is lacking, rendering extrapolations to atmospheric conditions speculative. In particular, we cannot yet decide which indirect aircraft effect scenario is more plausible, and options suggested to mitigate the problem remain uncertain.


2011 ◽  
Vol 11 (11) ◽  
pp. 30797-30851 ◽  
Author(s):  
I. Crawford ◽  
K. N. Bower ◽  
T. W. Choularton ◽  
C. Dearden ◽  
J. Crosier ◽  
...  

Abstract. In-situ high resolution aircraft measurements of cloud microphysical properties were made in coordination with ground based remote sensing observations of Radar and Lidar as part of the Aerosol Properties, PRocesses And InfluenceS on the Earth's climate (APPRAISE) project. A narrow but extensive line (~100 km long) of shallow convective clouds over the southern UK was studied. Cloud top temperatures were observed to be higher than ~−8 °C, but the clouds were seen to consist of supercooled droplets and varying concentrations of ice particles. No ice particles were observed to be falling into the cloud tops from above. Current parameterisations of ice nuclei (IN) numbers predict too few particles will be active as ice nuclei to account for ice particle concentrations at the observed near cloud top temperatures (~−7 °C). The role of biological particles, consistent with concentrations observed near the surface, acting as potential efficient high temperature IN is considered important in this case. It was found that very high concentrations of ice particles (up to 100 L−1) could be produced by powerful secondary ice particle production emphasising the importance of understanding primary ice formation in slightly supercooled clouds. Aircraft penetrations at −3.5 °C, showed peak ice crystal concentrations of up to 100 L−1 which together with the characteristic ice crystal habits observed (generally rimed ice particles and columns) suggested secondary ice production had occurred. To investigate whether the Hallett-Mossop (HM) secondary ice production process could account for these observations, ice splinter production rates were calculated. These calculated rates and observations could only be reconciled provided the constraint that only droplets >24 μm in diameter could lead to splinter production, was relaxed slightly by 2 μm. Model simulations of the case study were also performed with the WRF (Weather, Research and Forecasting) model and ACPIM (Aerosol Cloud and Precipitation Interactions Model) to investigate the likely origins of the ice phase in these slightly supercooled clouds and to assess the role played by the HM process in this and in controlling precipitation formation under these conditions. WRF results showed that while HM does act to increase the mass and number concentration of ice particles produced in the model simulations, in the absence of HM, the ice number concentration arising from primary ice nucleation alone (several L−1) was apparently sufficient to sustain precipitation although the distribution of the precipitation was changed. Thus in the WRF model the HM process was shown to be non-critical for the formation of precipitation in this particular case. However, this result is seen to be subject to an important caveat concerning the simulation of the cloud macrostructure. The model was unable to capture a sharp temperature inversion seen in the radiosonde profiles at 2 km, and consequently the cloud top temperature in the model was able to reach lower values than observed in-situ or obtained from satellite data. ACPIM simulations confirmed the HM process to be a very powerful mechanism for producing the observed high ice concentrations, provided that primary nucleation occured to initiate the ice formation, and large droplets were present which then fell collecting the primary ice particles to form instant rimer particles. However, the time to generate the observed peak ice concentrations was found to be dependant on the number of primary IN present (decreasing with increasing IN number). This became realistic (around 20 min) only when the temperature input to the existing IN parameterisation was 6 °C lower than observed at cloud top, highlighting the requirement to improve basic knowledge of the number and type of IN active at these high temperatures. In simulations where cloud droplet numbers were realistic the precipitation rate was found to be unaffected by HM, with warm rain processes dominating precipitation development in this instance.


2017 ◽  
Vol 200 ◽  
pp. 165-194 ◽  
Author(s):  
Joseph C. Charnawskas ◽  
Peter A. Alpert ◽  
Andrew T. Lambe ◽  
Thomas Berkemeier ◽  
Rachel E. O’Brien ◽  
...  

Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil fuel combustion can acquire a coating of SOA. We investigate SOA–soot biogenic–anthropogenic interactions and their impact on ice nucleation in relation to the particles’ organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without the presence of sulfate or soot particles. Corresponding particle glass transition (Tg) and full deliquescence relative humidity (FDRH) were estimated using a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfate mixtures exhibit a core–shell configuration (i.e.a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation, in agreement with respectiveTgand FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid, inducing ice nucleation. Naphthalene SOA coated soot particles acted as ice nuclei above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate renders this even less likely. However, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during pre-industrial times or in pristine areas.


Sign in / Sign up

Export Citation Format

Share Document