Review of Evaluation of water vapour assimilation in the upper troposphere and lower stratosphere by a chemical transport model

2016 ◽  
Author(s):  
Anonymous
2016 ◽  
Vol 9 (9) ◽  
pp. 4355-4373 ◽  
Author(s):  
Swagata Payra ◽  
Philippe Ricaud ◽  
Rachid Abida ◽  
Laaziz El Amraoui ◽  
Jean-Luc Attié ◽  
...  

Abstract. The present analysis deals with one of the most debated aspects of the studies on the upper troposphere/lower stratosphere (UTLS), namely the budget of water vapour (H2O) at the tropical tropopause. Within the French project “Multiscale water budget in the upper troposphere and lower stratosphere in the TROpics” (TRO-pico), a global-scale analysis has been set up based on space-borne observations, models and assimilation techniques. The MOCAGE-VALENTINA assimilation tool has been used to assimilate the Aura Microwave Limb Sounder (MLS) version 3.3 H2O measurements within the 316–5 hPa range from August 2011 to March 2013 with an assimilation window of 1 h. Diagnostics based on observations minus analysis and forecast are developed to assess the quality of the assimilated H2O fields. Comparison with an independent source of H2O measurements in the UTLS based on the space-borne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) observations and with meteorological ARPEGE analyses is also shown. Sensitivity studies of the analysed fields have been performed by (1) considering periods when no MLS measurements are available and (2) using H2O data from another MLS version (4.2). The studies have been performed within three different spaces in time and space coincidences with MLS (hereafter referred to as MLS space) and MIPAS (MIPAS space) observations and with the model (model space) outputs and at three different levels: 121 hPa (upper troposphere), 100 hPa (tropopause) and 68 hPa (lower stratosphere) in January and February 2012. In the MLS space, the analyses behave consistently with the MLS observations from the upper troposphere to the lower stratosphere. In the model space, the analyses are wetter than the reference atmosphere as represented by ARPEGE and MLS in the upper troposphere (121 hPa) and around the tropopause (100 hPa), but are consistent with MLS and MIPAS in the lower stratosphere (68 hPa). In the MIPAS space, the sensitivity and the vertical resolution of the MIPAS data set at 121 and 100 hPa prevent assessment of the behaviour of the analyses at 121 and 100 hPa, particularly over intense convective areas as the South American, the African and the Maritime continents but, in the lower stratosphere (68 hPa), the analyses are very consistent with MIPAS. Sensitivity studies show the improvement on the H2O analyses in the tropical UTLS when assimilating space-borne measurements of better quality, particularly over the convective areas.


2016 ◽  
Author(s):  
S. Payra ◽  
P. Ricaud ◽  
R. Abida ◽  
L. El Amraoui ◽  
J.-L. Attié ◽  
...  

Abstract. The present analysis deals with one of the most debated aspect of the studies on the Upper Troposphere/Lower Stratosphere (UTLS), namely the budget of the water vapour (H2O) at the tropical tropopause. Within the French project "Multiscale water budget in the upper troposphere and lower stratosphere in the TROpics" (TRO-pico), a global-scale analysis has been set up based on space-borne observations, model and assimilation techniques. The MOCAGE-VALENTINA assimilation tool has been used to assimilate the Aura Microwave Limb Sounder (MLS) version 3.3 H2O measurements within the 316–5 hPa hPa range from August 2011 to March 2013 with an assimilation window of 1 hour. Diagnostics are developed to assess the quality of the assimilated H2O fields depending on several parameters: model error, observation minus analysis and forecast. Comparison with an independent source of H2O measurements in the UTLS based on the spaceborne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) observations and with meteorological ARPEGE analyses are also shown. Sensitivity studies of the analyzed fields have been performed by: 1) considering periods when no MLS measurements are available and 2) using another MLS version 4.2 H2O data. The studies have been performed within 3 different spaces in time and space coincidences with MLS and MIPAS observations and with the model outputs and at 3 different levels: 121 hPa (upper troposphere), 100 hPa (tropopause), and 68 hPa (lower stratosphere) in January and February 2012. In the MLS space, the analyses behave consistently with the MLS observations from the upper troposphere to the lower stratosphere. In the model space, the analyses are wetter than the “true” atmosphere as represented by ARPEGE and MLS in the upper troposphere (121 hPa) and around the tropopause (100 hPa), but consistent with MLS and MIPAS in the lower stratosphere (68 hPa). In the MIPAS space, the sensitivity and the vertical resolution of the MIPAS data set at 121 and 100 hPa prevent to assess the behaviour of the analyses at 121 and 100 hPa particularly over intense convective areas as the Southern American, the African and the Maritime continents but, in the lower stratosphere (68 hPa), the analyses are very consistent with MIPAS. Sensitivity studies show the great improvement on the H2O analyses in the tropical UTLS when assimilating spaceborne measurements of better quality particularly over the convective areas.


2009 ◽  
Vol 9 (5) ◽  
pp. 18511-18543 ◽  
Author(s):  
J. Aschmann ◽  
B. M. Sinnhuber ◽  
E. L. Atlas ◽  
S. M. Schauffler

Abstract. The transport of very short-lived substances into the tropical upper troposphere and lower stratosphere is investigated by a three-dimensional chemical transport model using archived convective updraft mass fluxes (or detrainment rates) from the European Centre for Medium-Range Weather Forecast's ERA-Interim reanalysis. Large-scale vertical velocities are calculated from diabatic heating rates. With this approach we explicitly model the large scale subsidence in the tropical troposphere with convection taking place in fast and isolated updraft events. The model calculations agree generally well with observations of bromoform and methyl iodide from aircraft campaigns and with ozone and water vapor from sonde and satellite observations. Using a simplified treatment of dehydration and bromine product gas washout we give a range of 1.6 to 3 ppt for the contribution of bromoform to stratospheric bromine, assuming a uniform source in the boundary layer of 1 ppt. We show that the most effective region for VSLS transport into the stratosphere is the West Pacific, accounting for about 55% of the bromine from bromoform transported into the stratosphere under the supposition of a uniformly distributed source.


2014 ◽  
Vol 7 (11) ◽  
pp. 3623-3632 ◽  
Author(s):  
M. N. Deeter ◽  
S. Martínez-Alonso ◽  
D. P. Edwards ◽  
L. K. Emmons ◽  
J. C. Gille ◽  
...  

Abstract. The Measurements of Pollution in the Troposphere (MOPITT) Version 6 (V6) product for carbon monoxide (CO) incorporates several enhancements which will benefit many users of MOPITT data. V6 algorithm improvements are described in detail, and V6 validation results are presented. First, a geolocation bias related to the orientation of the MOPITT instrument relative to the TERRA platform was characterized and eliminated. Second, the variable a priori for CO concentrations for V6 is based on simulations performed with the chemical transport model Community Atmosphere Model with Chemistry (CAM-chem) for the years 2000–2009 instead of the model-derived climatology for 1997–2004 used for V5. Third, meteorological fields required for V6 retrieval processing are extracted from the MERRA (Modern-Era Retrospective Analysis For Research And Applications) reanalysis. Finally, a significant latitude-dependent retrieval bias in the upper troposphere in Version 5 products has been substantially reduced.


2016 ◽  
Author(s):  
R. J. Pope ◽  
N. A. D. Richards ◽  
M. P. Chipperfield ◽  
D. P. Moore ◽  
S. A. Monks ◽  
...  

Abstract. Peroxyacetyl nitrate (PAN) is an important chemical species in the troposphere as it aids the long-range transport of NOx and subsequent formation of O3 in relatively clean remote regions. Over the past few decades observations from aircraft campaigns and surface sites have been used to better understand the regional distribution of PAN. However, recent measurements made by satellites allow for a global assessment of PAN in the upper troposphere – lower stratosphere (UTLS). In this study, we investigate global PAN distributions from two independent retrieval methodologies, based on measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument, on board ENVISAT from the Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology and the Department of Physics and Astronomy, University of Leicester (UoL). Retrieving PAN from MIPAS is challenging due to the weak signal in the measurements and contamination from other species. Therefore, we compare the two MIPAS datasets with observations from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), insitu aircraft data and the TOMCAT 3-D chemical transport model. MIPAS shows peak UTLS PAN concentrations over the biomass burning regions (e.g. ranging from 150 to > 200 pptv at 150 hPa) and during the summertime Asian monsoon as enhanced convection aids the vertical transport of PAN from the lower atmosphere. At 150 hPa, we find significant differences between the two MIPAS datasets in the tropics, where IMK PAN concentrations are larger by 50–100 pptv. Comparisons between MIPAS and ACE-FTS show better agreement with the UoL MIPAS PAN concentrations at 200 hPa, but with mixed results above this altitude. TOMCAT generally captures the magnitude and structure of climatological aircraft PAN profiles within the observational variability allowing it to be used to investigate the MIPAS PAN differences. TOMCAT-MIPAS comparisons show that the model is both positively (UoL) and negatively (IMK) biased against the satellite products. These results show that satellite PAN observations are able to detect realistic spatial variations in PAN in the UTLS, but further work is needed to resolve differences in existing retrievals to allow quantitative use of the products.


2017 ◽  
Author(s):  
Han Han ◽  
Jane Liu ◽  
Huiling Yuan ◽  
Ye Zhu ◽  
Yue Wu ◽  
...  

Abstract. Based on 20-year simulations using a global chemical transport model, GEOS-Chem, and a trajectory model, HYSPLIT, the transport of ozone produced in the African troposphere to Asia is investigated. The study shows that the influence of African ozone on Asia varies largely in time and space. In the middle and upper troposphere, the inflow of African ozone to Asia peaks around 25° N, being the largest in boreal winter and early spring (> 10 ppbv) and the lowest in boreal summer (


2011 ◽  
Vol 11 (1) ◽  
pp. 2233-2262
Author(s):  
E. C. Browne ◽  
A. E. Perring ◽  
P. J. Wooldridge ◽  
E. Apel ◽  
S. R. Hall ◽  
...  

Abstract. Using measurements from the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) experiment, we show that methyl peroxy nitrate (CH3O2NO2) is present in concentrations of ~5–15 pptv in the springtime arctic upper troposphere. We investigate the regional and global effects of CH3O2NO2 by including its chemistry in the GEOS-CHEM 3-D global chemical transport model. We find that at temperatures below 240 K inclusion of CH3O2NO2 chemistry results in decreases of up to ~20% in NOx, ~20% in N2O5, ~5% in HNO3, ~2% in ozone, and increases in methyl hydrogen peroxide of up to ~14%. Larger changes are observed in biomass burning plumes lofted to high altitude. Additionally, by sequestering NOx at low temperatures, CH3O2NO2 decreases the cycling of HO2 to OH, resulting in a larger upper tropospheric HO2 to OH ratio. These results may impact some estimates of lightning NOx sources as well as help explain differences between models and measurements of upper tropospheric composition.


2016 ◽  
Vol 16 (21) ◽  
pp. 13541-13559 ◽  
Author(s):  
Richard J. Pope ◽  
Nigel A. D. Richards ◽  
Martyn P. Chipperfield ◽  
David P. Moore ◽  
Sarah A. Monks ◽  
...  

Abstract. Peroxyacetyl nitrate (PAN) is an important chemical species in the troposphere as it aids the long-range transport of NOx and subsequent formation of O3 in relatively clean remote regions. Over the past few decades observations from aircraft campaigns and surface sites have been used to better understand the regional distribution of PAN. However, recent measurements made by satellites allow for a global assessment of PAN in the upper troposphere–lower stratosphere (UTLS). In this study, we investigate global PAN distributions from two independent retrieval methodologies, based on measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument, on board Envisat from the Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, and the Department of Physics and Astronomy, University of Leicester (UoL). Retrieving PAN from MIPAS is challenging due to the weak signal in the measurements and contamination from other species. Therefore, we compare the two MIPAS datasets with observations from the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS), in situ aircraft data and the 3-D chemical transport model TOMCAT. MIPAS shows peak UTLS PAN concentrations over the biomass burning regions (e.g. ranging from 150 to  >  200 pptv at 150 hPa) and during the summertime Asian monsoon as enhanced convection aids the vertical transport of PAN from the lower atmosphere. At 150 hPa, we find significant differences between the two MIPAS datasets in the tropics, where IMK PAN concentrations are larger by 50–100 pptv. Comparisons between MIPAS and ACE-FTS show better agreement with the UoL MIPAS PAN concentrations at 200 hPa, but with mixed results above this altitude. TOMCAT generally captures the magnitude and structure of climatological aircraft PAN profiles within the observational variability allowing it to be used to investigate the MIPAS PAN differences. TOMCAT–MIPAS comparisons show that the model is both positively (UoL) and negatively (IMK) biased against the satellite products. These results indicate that satellite PAN observations are able to detect realistic spatial variations in PAN in the UTLS, but further work is needed to resolve differences in existing retrievals to allow quantitative use of the products.


2011 ◽  
Vol 11 (9) ◽  
pp. 4209-4219 ◽  
Author(s):  
E. C. Browne ◽  
A. E. Perring ◽  
P. J. Wooldridge ◽  
E. Apel ◽  
S. R. Hall ◽  
...  

Abstract. Using measurements from the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) experiment, we show that methyl peroxy nitrate (CH3O2NO2) is present in concentrations of ~5–15 pptv in the springtime arctic upper troposphere. We investigate the regional and global effects of CH3O2NO2 by including its chemistry in the GEOS-Chem 3-D global chemical transport model. We find that at temperatures below 240 K inclusion of CH3O2NO2 chemistry results in decreases of up to ~20 % in NOx, ~20 % in N2O5, ~5 % in HNO3, ~2 % in ozone, and increases in methyl hydrogen peroxide of up to ~14 %. Larger changes are observed in biomass burning plumes lofted to high altitude. Additionally, by sequestering NOx at low temperatures, CH3O2NO2 decreases the cycling of HO2 to OH, resulting in a larger upper tropospheric HO2 to OH ratio. These results may impact some estimates of lightning NOx sources as well as help explain differences between models and measurements of upper tropospheric composition.


2020 ◽  
Author(s):  
Eloise Marais ◽  
Joanna Joiner ◽  
Sungyeon Choi

<p>Nitrogen oxides (NO<sub> x</sub> = NO + NO<sub>2</sub>) in the upper troposphere (~10-12 km) are effective at producing ozone in the upper troposphere where ozone is a potent greenhouse gas. Observations of NO<sub>x</sub> in the upper troposphere are limited in time to a few intensive research aircraft campaigns and in space to commercial aircraft campaigns. There are satellite-derived observations of NO<sub>2</sub> in the upper troposphere from the Ozone Monitoring Instrument (OMI), but these are at very coarse resolutions (seasonal, > 2,000 km). The high-resolution Sentinel-5P/TROPOMI instrument offers higher spatial resolution and better cloud-resolving capability than OMI. Here we use synthetic columns of NO<sub>2</sub> from the GEOS-Chem chemical transport model to assess feasibility of deriving NO<sub>2</sub> in the upper troposphere using partial columns of NO<sub>2</sub> above cloudy scenes (the so-called cloud-slicing technique). The model is also used to quantify errors induced by uncertainties in cloud-top height and to determine whether NO<sub>2</sub> over cloudy scenes is representative of all-sky conditions (the "truth"). We find that the cloud-slicing approach is spatially consistent (R =0.5) with the "truth", but with a small (10 pptv) bias in background NO<sub>2</sub>. Cloud-slicing is then applied to TROPOMI total columns of NO<sub>2</sub> to derive near-global observations of NO<sub>2</sub> in the upper troposphere and assessed against the existing OMI products and aircraft observations from NASA DC8 aircraft campaigns.</p>


Sign in / Sign up

Export Citation Format

Share Document