scholarly journals Residual Temperature Bias Effects in LIMS Stratospheric Ozone and Water Vapor

2020 ◽  
Author(s):  
Ellis Remsberg ◽  
V. Lynn Harvey ◽  
Arlin Krueger ◽  
Murali Natarajan

Abstract. The Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) instrument operated from October 25, 1978, through May 28, 1979. Its Version (V6) profiles were processed and archived in 2002. We present several diagnostic examples of the quality of the V6 stratospheric ozone and water vapor data based on their Level 3 zonal Fourier coefficient products. In particular, we show that there are small differences in the ascending (A) minus descending (D) orbital temperature-pressure or T(p) profiles (their A-D values) that affect (A-D) ozone and water vapor. Systematic A-D biases in T(p) can arise from small radiance biases and/or from viewing anomalies along orbits. There can also be (A-D) differences in T(p) due to not resolving and correcting for all of the atmospheric temperature gradient along LIMS tangent view-paths. An error in T(p) affects the retrievals of ozone and water vapor through: (1) the Planck blackbody function in forward calculations of limb radiance that are part of the iterative retrieval algorithm of LIMS, and (2) the registration of the measured LIMS species radiance profiles in pressure-altitude, particularly for the lower stratosphere. We evaluate V6 ozone profile biases in the upper stratosphere with the aid of comparisons against a monthly climatology of UV-ozone soundings from rocketsondes. We also provide results of time series analyses of V6 ozone, water vapor, and potential vorticity for the middle stratosphere to show that their average (A+D) V6 Level 3 products provide a clear picture of the evolution of those tracers during northern hemisphere winter. We recommend that researchers use the average V6 Level 3 data for their science studies of stratospheric ozone and water vapor wherever diurnal variations of them are unexpected. We also point out that the present-day Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment is providing measurements and retrievals of temperature and ozone, which are essentially free of any anomalous diurnal variations.

2021 ◽  
Vol 14 (3) ◽  
pp. 2185-2199
Author(s):  
Ellis Remsberg ◽  
V. Lynn Harvey ◽  
Arlin Krueger ◽  
Murali Natarajan

Abstract. The Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) instrument operated from 25 October 1978 through 28 May 1979. Its version 6 (V6) profiles were processed and archived in 2002. We present several diagnostic examples of the quality of the V6 stratospheric species distributions based on their level 3 zonal Fourier coefficient products. In particular, we show that there are small differences in the ascending (A) minus descending (D) orbital temperature–pressure or T(p) profiles (their A−D values) that affect (A−D) species values. Systematic A−D biases in T(p) can arise from small radiance biases and/or from viewing anomalies along orbits. There can also be (A−D) differences in T(p) due to not resolving and correcting for all of the atmospheric temperature gradient along LIMS tangent view-paths. An error in T(p) affects species retrievals through (1) the Planck blackbody function in forward calculations of limb radiance that are part of the iterative retrieval algorithm of LIMS, and (2) the registration of the measured LIMS species radiance profiles in pressure altitude, mainly for the lower stratosphere. There are clear A−D differences for ozone, H2O, and HNO3 but not for NO2. Percentage differences are larger in the lower stratosphere for ozone and H2O because those species are optically thick. We evaluate V6 ozone profile biases in the upper stratosphere with the aid of comparisons against a monthly climatology of UV–ozone soundings from rocketsondes. We also provide results of time series analyses of V6 ozone, H2O, and potential vorticity for the middle stratosphere to show that their average (A+D) V6 level 3 products provide a clear picture of the evolution of those tracers during Northern Hemisphere winter. We recommend that researchers use the average V6 level 3 product for their science studies of stratospheric ozone and H2O, while keeping in mind that there are uncorrected nonlocal thermodynamic equilibrium effects in daytime ozone in the lower mesosphere and in daytime H2O in the uppermost stratosphere. We also point out that the present-day Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment provides measurements and retrievals of temperature and ozone that are nearly free of anomalous diurnal variations and of effects from gradients at low and middle latitudes.


2020 ◽  
Vol 12 (8) ◽  
pp. 1291
Author(s):  
Wan Wu ◽  
Xu Liu ◽  
Qiguang Yang ◽  
Daniel K. Zhou ◽  
Allen M. Larar

We introduce a novel spectral fingerprinting scheme that can be used to derive long-term atmospheric temperature and water vapor anomalies from hyperspectral infrared sounders such as Cross-track Infrared Sounder (CrIS) and Atmospheric Infrared Sounder (AIRS). It is a challenging task to derive climate trends from real satellite observations due to the difficulty of carrying out accurate cloudy radiance simulations and constructing radiometrically consistent radiative kernels. To address these issues, we use a principal component based radiative transfer model (PCRTM) to perform multiple scattering calculations of clouds and a PCRTM-based physical retrieval algorithm to derive radiometrically consistent radiative kernels from real satellite observations. The capability of including the cloud scattering calculations in the retrieval process allows the establishment of a rigorous radiometric fitting to satellite-observed radiances under all-sky conditions. The fingerprinting solution is directly obtained via an inverse relationship between the atmospheric anomalies and the corresponding spatiotemporally averaged radiance anomalies. Since there is no need to perform Level 2 retrievals on each individual satellite footprint for the fingerprinting approach, it is much more computationally efficient than the traditional way of producing climate data records from spatiotemporally averaged Level 2 products. We have applied the spectral fingerprinting method to six years of CrIS and 16 years of AIRS data to derive long-term anomaly time series for atmospheric temperature and water vapor profiles. The CrIS and AIRS temperature and water vapor anomalies derived from our spectral fingerprinting method have been validated using results from the PCRTM-based physical retrieval algorithm and the AIRS operational retrieval algorithm, respectively.


2018 ◽  
Vol 11 (2) ◽  
pp. 971-995 ◽  
Author(s):  
Fredrick W. Irion ◽  
Brian H. Kahn ◽  
Mathias M. Schreier ◽  
Eric J. Fetzer ◽  
Evan Fishbein ◽  
...  

Abstract. Single-footprint Atmospheric Infrared Sounder spectra are used in an optimal estimation-based algorithm (AIRS-OE) for simultaneous retrieval of atmospheric temperature, water vapor, surface temperature, cloud-top temperature, effective cloud optical depth and effective cloud particle radius. In a departure from currently operational AIRS retrievals (AIRS V6), cloud scattering and absorption are in the radiative transfer forward model and AIRS single-footprint thermal infrared data are used directly rather than cloud-cleared spectra (which are calculated using nine adjacent AIRS infrared footprints). Coincident MODIS cloud data are used for cloud a priori data. Using single-footprint spectra improves the horizontal resolution of the AIRS retrieval from  ∼  45 to  ∼  13.5 km at nadir, but as microwave data are not used, the retrieval is not made at altitudes below thick clouds. An outline of the AIRS-OE retrieval procedure and information content analysis is presented. Initial comparisons of AIRS-OE to AIRS V6 results show increased horizontal detail in the water vapor and relative humidity fields in the free troposphere above the clouds. Initial comparisons of temperature, water vapor and relative humidity profiles with coincident radiosondes show good agreement. Future improvements to the retrieval algorithm, and to the forward model in particular, are discussed.


2021 ◽  
Author(s):  
Ellis Remsberg ◽  
Murali Natarajan ◽  
Ernest Hilsenrath

Abstract. The Nimbus 7 limb infrared monitor of the stratosphere (LIMS) instrument operated from October 25, 1978, through May 28, 1979. Its Version 6 (V6) profiles and their Level 3 or zonal Fourier coefficient products have been characterized and archived in 2008 and in 2011, respectively. This paper focuses on the value and use of daily ozone maps from Level 3, based on a gridding of its zonal coefficients. We present maps of V6 ozone on pressure surfaces and compare them with several rocket-borne chemiluminescent ozone measurements that extend into the lower mesosphere. Daily, synoptic maps of V6 ozone and temperature illustrate that they are an important aid in interpreting satellite limb-infrared emission versus local measurements, especially when they occur during dynamically active periods of northern hemisphere winter. We then show a sequence of V6 maps of upper stratospheric ozone, spanning the minor stratospheric warmings of late January and early February 1979. The map sequence of V6 geopotential height reveals how ozone was changing in the vortex and at the centers of adjacent anticyclones. We also report on zonal variations of the tertiary ozone maximum of the upper mesosphere and its associated temperature fields during winter. These several examples provide a guide to researchers for further exploratory analyses of middle atmosphere ozone from LIMS.


2013 ◽  
Vol 13 (14) ◽  
pp. 6877-6886 ◽  
Author(s):  
D. Scheiben ◽  
A. Schanz ◽  
B. Tschanz ◽  
N. Kämpfer

Abstract. In this paper, we compare the diurnal variations in middle-atmospheric water vapor as measured by two ground-based microwave radiometers in the Alpine region near Bern, Switzerland. The observational data set is also compared to data from the chemistry–climate model WACCM. Due to the small diurnal variations of usually less than 1%, averages over extended time periods are required. Therefore, two time periods of five months each, December to April and June to October, were taken for the comparison. The diurnal variations from the observational data agree well with each other in amplitude and phase. The linear correlation coefficients range from 0.8 in the upper stratosphere to 0.5 in the upper mesosphere. The observed diurnal variability is significant at all pressure levels within the sensitivity of the instruments. Comparing our observations with WACCM, we find that the agreement of the phase of the diurnal cycle between observations and model is better from December to April than from June to October. The amplitudes of the diurnal variations for both time periods increase with altitude in WACCM, but remain approximately constant at 0.05 ppm in the observations. The WACCM data are used to separate the processes that lead to diurnal variations in middle-atmospheric water vapor above Bern. The dominating processes were found to be meridional advection below 0.1 hPa, vertical advection between 0.1 and 0.02 hPa and (photo-)chemistry above 0.02 hPa. The contribution of zonal advection is small. The highest diurnal variations in water vapor as seen in the WACCM data are found in the mesopause region during the time period from June to October with diurnal amplitudes of 0.2 ppm (approximately 5% in relative units).


2018 ◽  
Vol 11 (4) ◽  
pp. 2345-2360 ◽  
Author(s):  
Sweta Shah ◽  
Olaf N. E. Tuinder ◽  
Jacob C. A. van Peet ◽  
Adrianus T. J. de Laat ◽  
Piet Stammes

Abstract. Ozone profile retrieval from nadir-viewing satellite instruments operating in the ultraviolet–visible range requires accurate calibration of Level-1 (L1) radiance data. Here we study the effects of calibration on the derived Level-2 (L2) ozone profiles for three versions of SCanning Imaging Absorption spectroMeter for Atmospheric ChartograpHY (SCIAMACHY) L1 data: version 7 (v7), version 7 with m-factors (v7mfac) and version 8 (v8). We retrieve nadir ozone profiles from the SCIAMACHY instrument that flew on board Envisat using the Ozone ProfilE Retrieval Algorithm (OPERA) developed at KNMI with a focus on stratospheric ozone. We study and assess the quality of these profiles and compare retrieved L2 products from L1 SCIAMACHY data versions from the years 2003 to 2011 without further radiometric correction. From validation of the profiles against ozone sonde measurements, we find that the v8 performs better than v7 and v7mfac due to correction for the scan-angle dependency of the instrument's optical degradation. Validation for the years 2003 and 2009 with ozone sondes shows deviations of SCIAMACHY ozone profiles of 0.8–15 % in the stratosphere (corresponding to pressure range ∼ 100–10 hPa) and 2.5–100 % in the troposphere (corresponding to pressure range ∼ 1000–100 hPa), depending on the latitude and the L1 version used. Using L1 v8 for the years 2003–2011 leads to deviations of ∼ 1–11 % in stratospheric ozone and ∼ 1–45 % in tropospheric ozone. The SCIAMACHY L1 v8 data can still be improved upon in the 265–330 nm range used for ozone profile retrieval. The slit function can be improved with a spectral shift and squeeze, which leads to a few percent residue reduction compared to reference solar irradiance spectra. Furthermore, studies of the ratio of measured to simulated reflectance spectra show that a bias correction in the reflectance for wavelengths below 300 nm appears to be necessary.


2013 ◽  
Vol 13 (2) ◽  
pp. 3859-3880 ◽  
Author(s):  
D. Scheiben ◽  
A. Schanz ◽  
B. Tschanz ◽  
N. Kämpfer

Abstract. In this paper, we compare the diurnal variations in middle atmospheric water vapor as measured by two ground-based microwave radiometers in the Alpine region near Bern, Switzerland. The observational data set is also compared to data from the chemistry-climate model WACCM. Due to the small diurnal variations of usually less than 1%, averages over extended time periods are required. Therefore, two time periods of five months each, December to April and June to October, were taken for the comparison. The diurnal variations from the observational data agree well with each other in amplitude and phase. The linear correlation coefficients range from 0.8 in the upper stratosphere to 0.5 in the upper mesosphere. The observed diurnal variability is significant at all pressure levels within the sensitivity of the instruments. Comparing our observations with WACCM, we find that the agreement of the phase of the diurnal cycle between observations and model is better from December to April than from June to October. The amplitudes of the diurnal variations for both time periods increase with altitude in WACCM, but remain approximately constant at 0.05 parts per million in the observations. The WACCM data is used to separate the processes that lead to diurnal variations in middle atmospheric water vapor above Bern. The dominating processes were found to be meridional advection below 0.1 hPa, vertical advection between 0.1 and 0.02 hPa and (photo-)chemistry above 0.02 hPa. The contribution of zonal advection is small. The highest diurnal variations in water vapor are found in the mesopause region during the time period from June to October with diurnal amplitudes of 0.2 ppm (approximately 5% in relative units).


2021 ◽  
Vol 14 (10) ◽  
pp. 6443-6468
Author(s):  
Richard J. Roy ◽  
Matthew Lebsock ◽  
Marcin J. Kurowski

Abstract. Differential absorption radar (DAR) near the 183 GHz water vapor absorption line is an emerging measurement technique for humidity profiling inside of clouds and precipitation with high vertical resolution, as well as for measuring integrated water vapor (IWV) in clear-air regions. For radar transmit frequencies on the water line flank away from the highly attenuating line center, the DAR system becomes most sensitive to water vapor in the planetary boundary layer (PBL), which is a region of the atmosphere that is poorly resolved in the vertical by existing spaceborne humidity and temperature profiling instruments. In this work, we present a high-fidelity, end-to-end simulation framework for notional spaceborne DAR instruments that feature realistically achievable radar performance metrics and apply this simulator to assess DAR's PBL humidity observation capabilities. Both the assumed instrument parameters and radar retrieval algorithm leverage recent technology and algorithm development for an existing airborne DAR instrument. To showcase the capabilities of DAR for humidity observations in a variety of relevant PBL settings, we implement the instrument simulator in the context of large eddy simulations (LESs) of five different cloud regimes throughout the trade-wind subtropical-to-tropical cloud transition. Three distinct DAR humidity observations are investigated: IWV between the top of the atmosphere and the first detected cloud bin or Earth's surface; in-cloud water vapor profiles with 200 meter vertical resolution; and IWV between the last detected cloud bin and the Earth's surface, which can provide a precise measurement of the sub-cloud humidity. We provide a thorough assessment of the systematic and random errors for all three measurement products for each LES case and analyze the humidity precision scaling with along-track measurement integration. While retrieval performance depends greatly on the specific cloud regime, we find generally that for a radar with cross-track scanning capability, in-cloud profiles with 200 m vertical resolution and 10 %–20 % uncertainty can be retrieved for horizontal integration distances of 100–200 km. Furthermore, column IWV can be retrieved with 10 % uncertainty for 10–20 km of horizontal integration. Finally, we provide some example science applications of the simulated DAR observations, including estimating near-surface relative humidity using the cloud-to-surface column IWV and inferring in-cloud temperature profiles from the DAR water vapor profiles by assuming a fully saturated environment.


2010 ◽  
Vol 10 (6) ◽  
pp. 16277-16305
Author(s):  
I. Pisso ◽  
P. H. Haynes ◽  
K. S. Law

Abstract. We present trajectory-based estimates of Ozone Depletion Potentials (ODPs) for very short-lived halogenated source gases as a function of surface emission location. The ODPs are determined by the fraction of source gas and its degradation products which reach the stratosphere, depending primarily on tropospheric transport and chemistry, and the effect of the resulting reactive halogen in the stratosphere, which is determined by stratospheric transport and chemistry, in particular by stratospheric residence time. Reflecting the different timescales and physico-chemical processes in the troposphere and stratosphere, the estimates are based on calculation of separate ensembles of trajectories for the troposphere and stratosphere. A methodology is described by which information from the two ensembles can be combined to give the ODPs. The ODP estimates for a species with a 20 d lifetime, representing a compound like n-propyl bromide, are presented as an example. The estimated ODPs show strong geographical and season variation, particularly within the tropics. The values of the ODPs are sensitive to the inclusion of a convective parametrization in the trajectory calculations, but the relative spatial and seasonal variation is not. The results imply that ODPs are largest for emissions from South and South-East Asia during Northern Hemisphere summer and from the Western Pacific during Northern Hemisphere winter. Large ODPs are also estimated for emissions throughout the tropics with also non-negligible values extending into northern mid-latitudes particularly in the summer. These first estimates, which include some simplifying assumptions, show larger ODP values than previous studies, particularly over Southern Asia, suggesting that emissions of short-lived halogen source gases in certain geographical regions could have a significant impact on stratospheric ozone depletion.


Sign in / Sign up

Export Citation Format

Share Document