scholarly journals Development and validation of inexpensive, automated, dynamic flux chambers

2014 ◽  
Vol 7 (7) ◽  
pp. 6877-6915
Author(s):  
B. B. Almand-Hunter ◽  
J. T. Walker ◽  
N. P. Masson ◽  
L. Hafford ◽  
M. P. Hannigan

Abstract. We developed and validated an automated, inexpensive, and continuous multiple-species gas-flux monitoring system that can provide data for a variety of relevant atmospheric pollutants, including O3, CO2, and NOx. Validation consisted of conducting concurrent gas-phase dry-deposition experiments, using both dynamic flux chambers and an eddy-covariance system, in a grassy clearing in the Duke Forest (Chapel Hill, NC). Experiments were carried out in June and September, under a variety of meteorological conditions. Ozone-deposition measurements from the two methods matched very well (4–10% difference in mean flux rate) when the leaf-area index (LAI) inside the chambers was representative of the average LAI in the field. The dynamic flux chambers can be considered an accurate measurement system under these conditions. CO2 measurements were conducted for one 20 h period, and the flux chamber captured the diurnal trend in CO2 flux well, although the quantity of the data was not sufficient to validate chamber performance. Flux-chamber NOx measurements could be calculated when ambient NOx concentrations were above 1 ppb. Unfortunately, the eddy-covariance system for measuring NOx was not available during this field campaign, so comparisons cannot be made. NOx fluxes were in a reasonable range for the field site.

2015 ◽  
Vol 8 (1) ◽  
pp. 267-280 ◽  
Author(s):  
B. B. Almand-Hunter ◽  
J. T. Walker ◽  
N. P. Masson ◽  
L. Hafford ◽  
M. P. Hannigan

Abstract. We developed and validated an automated, inexpensive, and continuous multiple-species gas-flux monitoring system that can provide data for a variety of relevant atmospheric pollutants, including O3, CO2, and NOx. Validation consisted of conducting concurrent gas-phase dry-deposition experiments, using both dynamic flux chambers and an eddy-covariance system, in a grassy clearing in the Duke Forest (Chapel Hill, NC). Experiments were carried out in June and September under a variety of meteorological conditions. Ozone-deposition measurements from the two methods matched very well (4–10% difference in mean flux rate) when the leaf-area index (LAI) inside the chambers was representative of the average LAI in the field. The dynamic flux chambers can be considered an accurate measurement system under these conditions.


2012 ◽  
Vol 9 (10) ◽  
pp. 3757-3776 ◽  
Author(s):  
S. Kuppel ◽  
P. Peylin ◽  
F. Chevallier ◽  
C. Bacour ◽  
F. Maignan ◽  
...  

Abstract. Assimilation of in situ and satellite data in mechanistic terrestrial ecosystem models helps to constrain critical model parameters and reduce uncertainties in the simulated energy, water and carbon fluxes. So far the assimilation of eddy covariance measurements from flux-tower sites has been conducted mostly for individual sites ("single-site" optimization). Here we develop a variational data assimilation system to optimize 21 parameters of the ORCHIDEE biogeochemical model, using net CO2 flux (NEE) and latent heat flux (LE) measurements from 12 temperate deciduous broadleaf forest sites. We assess the potential of the model to simulate, with a single set of inverted parameters, the carbon and water fluxes at these 12 sites. We compare the fluxes obtained from this "multi-site" (MS) optimization to those of the prior model, and of the "single-site" (SS) optimizations. The model-data fit analysis shows that the MS approach decreases the daily root-mean-square difference (RMS) to observed data by 22%, which is close to the SS optimizations (25% on average). We also show that the MS approach distinctively improves the simulation of the ecosystem respiration (Reco), and to a lesser extent the gross primary productivity (GPP), although we only assimilated net CO2 flux. A process-oriented parameter analysis indicates that the MS inversion system finds a unique combination of parameters which is not the simple average of the different SS sets of parameters. Finally, in an attempt to validate the optimized model against independent data, we observe that global-scale simulations with MS optimized parameters show an enhanced phase agreement between modeled leaf area index (LAI) and satellite-based observations of normalized difference vegetation index (NDVI).


2015 ◽  
Vol 8 (5) ◽  
pp. 4711-4736
Author(s):  
J. B. Wu ◽  
X. Y. Zhou ◽  
A. Z. Wang ◽  
F. H. Yuan

Abstract. Eddy covariance using infrared gas analyses has been a useful tool for gas exchange measurements between soil, vegetation and atmosphere. So far, comparisons between the open- and closed-path eddy covariance (CP) system have been extensively made on CO2 flux estimations, while lacking in the comparison of water vapor flux estimations. In this study, the specific performance of water vapor flux measurements of an open-path eddy covariance (OP) system was compared against a CP system over a tall temperate forest in Northeast China. The results show that the fluxes from the OP system (LEop) were generally greater than the (LEcp though the two systems shared one sonic anemometer. The tube delay of closed-path analyser depended on relative humidity, and the fixed median time lag contributed to a significant underestimation of (LEcp between the forest and atmosphere, while slight systematic overestimation was also found for covariance maximization method with single broad time lag search window. After the optimized time lag compensation was made, the average difference between the 30 min (LEop and (LEcp was generally within 6%. Integrated over the annual cycle, the CP system yielded a 5.1% underestimation of forest evapotranspiration as compared to the OP system measurements (493 vs. 469 mm yr−1). This study indicates the importance to estimate the sampling tube delay accurately for water vapor flux calculations with closed-path analysers, and it also suggests that when discuss the energy balance closure problem in flux sites with closed-path eddy covariance systems, it has to be aware that some of the imbalance is possibly caused by the systematic underestimation of water vapor fluxes.


2012 ◽  
Vol 9 (3) ◽  
pp. 3317-3380 ◽  
Author(s):  
S. Kuppel ◽  
P. Peylin ◽  
F. Chevallier ◽  
C. Bacour ◽  
F. Maignan ◽  
...  

Abstract. Assimilation of in situ and satellite data in mechanistic terrestrial ecosystem models helps to constrain critical model parameters and reduce uncertainties in the simulated energy, water and carbon fluxes. So far the assimilation of eddy covariance measurements from flux-tower sites has been conducted mostly for individual sites ("single-site" optimization). Here we develop a variational data assimilation system to optimize 21 parameters of the ORCHIDEE biogeochemical model, using net CO2 flux (NEE) and latent heat flux (LE) measurements from twelve temperate deciduous broadleaf forest sites. We assess the potential of the model to simulate, with a single set of inverted parameters, the carbon and water fluxes at these 12 sites. We compare the fluxes obtained from this "multi-site" (MS) optimization to those of the prior model, and of the "single-site" (SS) optimizations. The model-data fit analysis shows that the MS approach decreases the daily root mean square difference (RMS) to observed data by 22%, which is close to the SS optimizations (25% on average). We also show that the MS approach distinctively improves the simulation of the ecosystem respiration (Reco), and to a lesser extent the gross carbon flux (GPP), although we only assimilated net CO2 flux. A process-oriented parameter analysis indicates that the MS inversion system finds a unique combination of parameters which is not the simple average of the different SS set of parameters. Finally, in an attempt to validate the optimized model against independent data, we observe that global scale simulations with MS optimized parameters show an enhanced phase agreement between modeled leaf area index (LAI) and satellite-based measurements of normalized difference vegetation index (NDVI).


2008 ◽  
Vol 93 (3-4) ◽  
pp. 133-147 ◽  
Author(s):  
Y. Nakai ◽  
Y. Matsuura ◽  
T. Kajimoto ◽  
A. P. Abaimov ◽  
S. Yamamoto ◽  
...  

2021 ◽  
Author(s):  
Sarah Letaïef ◽  
Pierre Camps ◽  
Thierry Poidras ◽  
Patrick Nicol ◽  
Delphine Bosch ◽  
...  

<p>Numerous studies have already shown the possibility of tracing the sources, the<br>compositions, and the concentration of atmospheric pollutants deposited on plant<br>leaves. In environmental geochemistry, inter-element and isotope ratios from<br>chemical element assays have been used for these purposes. Alternatively,<br>environmental magnetism represents a quick and inexpensive asset that is<br>increasingly used as a relative indicator for concentrations of air pollutant on bio<br>accumulator surfaces such as plants. However, a fundamental issue is still pending:<br>Do plants in urban areas represent a sink for fine particles that is sufficiently effective<br>to improve air quality? This is a very topical issue because some studies have shown<br>that the foliage can trap fine particles by different dry deposition processes, while<br>other studies based on CFD models indicate that plant hedges in cities can hinder<br>the atmospheric dispersion of pollutants and therefore increase pollution at the level of<br>emission sources such as traffic. To date, no consensus was made because several<br>factors not necessary well known must be taken into account, such as, PM<br>concentration and size, prevailing wind, surface structures, epicuticular wax, to<br>mention just a few examples. A first step toward the understanding of the impact of<br>urban greens on air quality is the precise determination of the deposition velocity (Vd)<br>parameter. This latter is specific for each species and it is most of the time<br>underestimated in modeling-based studies by taking standard values.<br>In that perspective, we built a wind tunnel (6 m long, 86 cm wide and 86 cm high) to<br>perform analogical experiments on different endemic species. All parameters are<br>controlled, i.e, the wind speed, the nature and the injection time of pollutants (Gasoline<br>or Diesel exhausts, brakes or tires dust, etc…). We can provide the PM concentrations<br>upwind and downwind of natural reconstituted hedges by two dustmeters (LOACs -<br>MétéoModem). Beforehand, parameters such as the hedge resistance (%) or the leaf<br>area index (LAI) have been estimated for each studied specie to allow comparability<br>between plants removal potential. The interest would ultimately combine PM<br>concentration measured by size bins from the LOACs with magnetic measurements<br>(ARM, IRM100mT, IRM300mT and SIRM) of plant leaves. The idea is to check whether it<br>would be possible to precisely determine in situ the dust removal rate by urban greens<br>with environmental magnetism measurements. Up to now, we have carried out on<br>different endemic species such as Elaeagnus x ebbingei leaves and Mediterranean<br>pine needles, the results of which will be presented.</p>


2009 ◽  
Vol 44 (11) ◽  
pp. 1365-1373 ◽  
Author(s):  
Carlos Antonio Costa dos Santos ◽  
Bernardo Barbosa da Silva ◽  
Tantravahi Venkata Ramana Rao ◽  
Christopher Michael Usher Neale

The objective of this work was to evaluate the reliability of eddy covariance measurements, analyzing the energy balance components, evapotranspiration and energy balance closure in dry and wet growing seasons, in a banana orchard. The experiment was carried out at a farm located within the irrigation district of Quixeré, in the Lower Jaguaribe basin, in Ceará state, Brazil. An eddy covariance system was used to measure the turbulent flux. An automatic weather station was installed in a grass field to obtain the reference evapotranspiration (ET0) from the combined FAO-Penman-Monteith method. Wind speed and vapor pressure deficit are the most important variables on the evaporative process in both growing seasons. In the dry season, the heat fluxes have a similar order of magnitude, and during the wet season the latent heat flux is the largest. The eddy covariance system had acceptable reliability in measuring heat flux, with actual evapotranspiration results comparing well with those obtained by using the water balance method. The energy balance closure had good results for the study area, with mean values of 0.93 and 0.86 for the dry and wet growing seasons respectively.


2018 ◽  
Vol 32 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Robert Czubaszek ◽  
Agnieszka Wysocka-Czubaszek

AbstractDigestate from biogas plants can play important role in agriculture by providing nutrients, improving soil structure and reducing the use of mineral fertilizers. Still, less is known about greenhouse gas emissions from soil during and after digestate application. The aim of the study was to estimate the emissions of carbon dioxide (CO2) and methane (CH4) from a field which was fertilized with digestate. The gas fluxes were measured with the eddy covariance system. Each day, the eddy covariance system was installed in various places of the field, depending on the dominant wind direction, so that each time the results were obtained from an area where the digestate was distributed. The results showed the relatively low impact of the studied gases emissions on total greenhouse gas emissions from agriculture. Maximum values of the CO2and CH4fluxes, 79.62 and 3.049 µmol s−1m−2, respectively, were observed during digestate spreading on the surface of the field. On the same day, the digestate was mixed with the topsoil layer using a disc harrow. This resulted in increased CO2emissions the following day. Intense mineralization of digestate, observed after fertilization may not give the expected effects in terms of protection and enrichment of soil organic matter.


Sign in / Sign up

Export Citation Format

Share Document