scholarly journals Sound speed in the Mediterranean Sea: an analysis from a climatological data set

2003 ◽  
Vol 21 (3) ◽  
pp. 833-846 ◽  
Author(s):  
S. Salon ◽  
A. Crise ◽  
P. Picco ◽  
E. de Marinis ◽  
O. Gasparini

Abstract. This paper presents an analysis of sound speed distribution in the Mediterranean Sea based on climatological temperature and salinity data. In the upper layers, propagation is characterised by upward refraction in winter and an acoustic channel in summer. The seasonal cycle of the Mediterranean and the presence of gyres and fronts create a wide range of spatial and temporal variabilities, with relevant differences between the western and eastern basins. It is shown that the analysis of a climatological data set can help in defining regions suitable for successful monitoring by means of acoustic tomography. Empirical Orthogonal Functions (EOF) decomposition on the profiles, performed on the seasonal cycle for some selected areas, demonstrates that two modes account for more than 98% of the variability of the climatological distribution. Reduced order EOF analysis is able to correctly represent sound speed profiles within each zone, thus providing the a priori knowledge for Matched Field Tomography. It is also demonstrated that salinity can affect the tomographic inversion, creating a higher degree of complexity than in the open oceans.Key words. Oceanography: general (marginal and semi-enclosed seas; ocean acoustics)

2003 ◽  
Vol 21 (1) ◽  
pp. 167-187 ◽  
Author(s):  
S. Sparnocchia ◽  
N. Pinardi ◽  
E. Demirov

Abstract. Multivariate vertical Empirical Orthogonal Functions (EOF) are calculated for the entire Mediterranean Sea both from observations and model simulations, in order to find the optimal number of vertical modes to represent the upper thermocline vertical structure. For the first time, we show that the large-scale Mediterranean thermohaline vertical structure can be represented by a limited number of vertical multivariate EOFs, and that the "optimal set" can be selected on the basis of general principles. In particular, the EOFs are calculated for the combined temperature and salinity statistics, dividing the Mediterranean Sea into 9 regions and grouping the data seasonally. The criterion used to establish whether a reduced set of EOFs is optimal is based on the analysis of the root mean square residual error between the original data and the profiles reconstructed by the reduced set of EOFs. It was found that the number of EOFs needed to capture the variability contained in the original data changes with geographical region and seasons. In particular, winter data require a smaller number of modes (4–8, depending on the region) than the other seasons (8–9 in summer). Moreover, western Mediterranean regions require more modes than the eastern Mediterranean ones, but this result may depend on the data scarcity in the latter regions. The EOFs computed from the in situ data set are compared to those calculated using data obtained from a model simulation. The main results of this exercise are that the two groups of modes are not strictly comparable but their ability to reproduce observations is the same. Thus, they may be thought of as equivalent sets of basis functions, upon which to project the thermohaline variability of the basin. Key words. Oceanography: general (water masses) – Oceanography: physical (hydrography; instruments and techniques)


2015 ◽  
Vol 19 (1) ◽  
pp. 209-223 ◽  
Author(s):  
A. J. Newman ◽  
M. P. Clark ◽  
K. Sampson ◽  
A. Wood ◽  
L. E. Hay ◽  
...  

Abstract. We present a community data set of daily forcing and hydrologic response data for 671 small- to medium-sized basins across the contiguous United States (median basin size of 336 km2) that spans a very wide range of hydroclimatic conditions. Area-averaged forcing data for the period 1980–2010 was generated for three basin spatial configurations – basin mean, hydrologic response units (HRUs) and elevation bands – by mapping daily, gridded meteorological data sets to the subbasin (Daymet) and basin polygons (Daymet, Maurer and NLDAS). Daily streamflow data was compiled from the United States Geological Survey National Water Information System. The focus of this paper is to (1) present the data set for community use and (2) provide a model performance benchmark using the coupled Snow-17 snow model and the Sacramento Soil Moisture Accounting Model, calibrated using the shuffled complex evolution global optimization routine. After optimization minimizing daily root mean squared error, 90% of the basins have Nash–Sutcliffe efficiency scores ≥0.55 for the calibration period and 34% ≥ 0.8. This benchmark provides a reference level of hydrologic model performance for a commonly used model and calibration system, and highlights some regional variations in model performance. For example, basins with a more pronounced seasonal cycle generally have a negative low flow bias, while basins with a smaller seasonal cycle have a positive low flow bias. Finally, we find that data points with extreme error (defined as individual days with a high fraction of total error) are more common in arid basins with limited snow and, for a given aridity, fewer extreme error days are present as the basin snow water equivalent increases.


2008 ◽  
Vol 112 (8) ◽  
pp. 3300-3313 ◽  
Author(s):  
Vittorio Barale ◽  
Jean-Michel Jaquet ◽  
Mapathé Ndiaye

2011 ◽  
Vol 8 (5) ◽  
pp. 8961-8998 ◽  
Author(s):  
Y. Cuypers ◽  
P. Bouruet-Aubertot ◽  
C. Marec ◽  
J.-L. Fuda

Abstract. One main purpose of BOUM experiment was to give evidence of the possible impact of submesoscale dynamics on biogeochemical cycles. To this aim physical as well as biogeochemical data were collected along a zonal transect through the western and eastern basins. Along this transect 3 day fixed point stations were performed within anticyclonic eddies during which microstructure measurements were collected over the first 100 m. We focus here on the characterization of turbulent mixing induced by internal wave breaking. The analysis of microstructure measurements revealed a high level of turbulence in the seasonal pycnocline and a moderate level below with energy dissipation mean values of the order of 10−6 W kg−1 and 10−8 W kg−1, respectively. Fine-scale parameterizations developed to mimic energy dissipation produced by internal wavebreaking were then tested against these direct measurements. Once validated a parameterization has been applied to infer energy dissipation and mixing over the whole data set, thus providing an overview over a latitudinal section of the Mediterranean sea. The results evidence a significant increase of dissipation at the top and base of eddies associated with strong near inertial waves. Vertical turbulent diffusivity is increased both in these regions and in the weakly stratified eddy core.


2017 ◽  
Author(s):  
Axel Behrendt ◽  
Hiroshi Sumata ◽  
Benjamin Rabe ◽  
Ursula Schauer

Abstract. UDASH is a unified and high-quality temperature and salinity data set for the Arctic Ocean and the subpolar seas north of 65° N for the period 1980–2015. The archive aims at including all publicly available data and so far consists of 288 532 oceanographic profiles measured mainly with conductivity/temperature/depth (CTD) probes, bottles, mechanical thermographs and expendable thermographs. The data were collected by ships, ice-tethered profilers, profiling floats and other platforms. To achieve a uniform quality level, suitable for a wide range of oceanographic analyses, approximately 74 million single measurements of temperature and salinity were thoroughly quality-checked. A large number of duplicate and erroneous profiles were detected and not included into the archive. Data outliers, suspicious gradients and other suspect data were flagged for quick identification. The final archive provides a unique and simple way of accessing most of the available temperature and salinity data for the Arctic Mediterranean Sea and can be downloaded from https://doi.org/10.1594/PANGAEA.872931.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mélanie Juza ◽  
Joaquín Tintoré

The increasing science and society requests for ocean monitoring from global to regional and local scales, the need for integration and convergence into a globally consistent ocean observing system as well as the need for improvement of access to information are now internationally recognized goals to progress toward the sustainable management of a healthy ocean. To respond to these challenges at regional level, the Balearic Islands Coastal Observing and Forecasting System (SOCIB) is developing a comprehensive set of ocean indicators in the Mediterranean Sea and around the Balearic Islands, key environments that are strongly affected by climate change and human pressure. This new SOCIB value-added product addresses the sub-regional ocean variability from daily (events) to interannual/decadal (climate) scales. A user-friendly interface has been implemented to monitor, visualize and communicate ocean information that is relevant for a wide range of sectors, applications and regional end-users. These sub-regional indicators allowed us to detect specific events in real time. Remarkable events and features identified include marine heat waves, atmospheric storm, extreme river discharge, mesoscale eddy, deep convection among others, all of them being oceanic phenomena that directly impact the ocean circulation and marine ecosystems. The long-term variations, in response to climate change, are also addressed highlighting and quantifying trends in physical and biogeochemical components of the ocean as well as sub-regional differences. At both (sub-) regional, national and international levels, a society-aligned science will have stronger impact on policy decision-makings and will support society to implement specific actions to address worldwide environmental challenges.


2015 ◽  
Vol 12 (6) ◽  
pp. 1647-1658 ◽  
Author(s):  
G. Cossarini ◽  
P. Lazzari ◽  
C. Solidoro

Abstract. The paper provides a basin-scale assessment of the spatiotemporal distribution of alkalinity in the Mediterranean Sea. The assessment is made by integrating the available observations into a 3-D transport–biogeochemical model. The results indicate the presence of complex spatial patterns: a marked west-to-east surface gradient of alkalinity is coupled to secondary negative gradients: (1) from marginal seas (Adriatic and Aegean Sea) to the eastern Mediterranean Sea and (2) from north to south in the western region. The west–east gradient is related to the mixing of Atlantic water entering from the Strait of Gibraltar with the high-alkaline water of the eastern sub-basins, which is correlated to the positive surface flux of evaporation minus precipitation. The north-to-south gradients are related to the terrestrial input and to the input of the Black Sea water through the Dardanelles. In the surface layers, alkalinity has a relevant seasonal cycle (up to 40 μmol kg−1) that is driven by physical processes (seasonal cycle of evaporation and vertical mixing) and, to a minor extent, by biological processes. A comparison of alkalinity vs. salinity indicates that different regions present different relationships: in regions of freshwater influence, the two quantities are negatively correlated due to riverine alkalinity input, whereas they are positively correlated in open sea areas of the Mediterranean Sea.


2003 ◽  
Vol 21 (1) ◽  
pp. 267-280 ◽  
Author(s):  
S. Brenner

Abstract. As part of the Mediterranean Forecasting System Pilot Project (MFSPP) we have implemented a high-resolution (2 km horizontal grid, 30 sigma levels) version of the Princeton Ocean Model for the southeastern corner of the Mediterranean Sea. The domain extends 200 km offshore and includes the continental shelf and slope, and part of the open sea. The model is nested in an intermediate resolution (5.5 km grid) model that covers the entire Levantine, Ionian, and Aegean Sea. The nesting is one way so that velocity, temperature, and salinity along the boundaries are interpolated from the relevant intermediate model variables. An integral constraint is applied so that the net mass flux across the open boundaries is identical to the net flux in the intermediate model. The model is integrated for three perpetual years with surface forcing specified from monthly mean climatological wind stress and heat fluxes. The model is stable and spins up within the first year to produce a repeating seasonal cycle throughout the three-year integration period. While there is some internal variability evident in the results, it is clear that, due to the relatively small domain, the results are strongly influenced by the imposed lateral boundary conditions. The results closely follow the simulation of the intermediate model. The main improvement is in the simulation over the narrow shelf region, which is not adequately resolved by the coarser grid model. Comparisons with direct current measurements over the shelf and slope show reasonable agreement despite the limitations of the climatological forcing. The model correctly simulates the direction and the typical speeds of the flow over the shelf and slope, but has difficulty properly re-producing the seasonal cycle in the speed.Key words. Oceanography: general (continental shelf processes; numerical modelling; ocean prediction)


Sign in / Sign up

Export Citation Format

Share Document