scholarly journals Fractional baud-length coding

2011 ◽  
Vol 29 (6) ◽  
pp. 1189-1196
Author(s):  
J. Vierinen

Abstract. We present a novel approach for modulating radar transmissions in order to improve target range and Doppler estimation accuracy. This is achieved by using non-uniform baud lengths. With this method it is possible to increase sub-baud range-resolution of phase coded radar measurements while maintaining a narrow transmission bandwidth. We first derive target backscatter amplitude estimation error covariance matrix for arbitrary targets when estimating backscatter in amplitude domain. We define target optimality and discuss different search strategies that can be used to find well performing transmission envelopes. We give several simulated examples of the method showing that fractional baud-length coding results in smaller estimation errors than conventional uniform baud length transmission codes when estimating the target backscatter amplitude at sub-baud range resolution. We also demonstrate the method in practice by analyzing the range resolved power of a low-altitude meteor trail echo that was measured using a fractional baud-length experiment with the EISCAT UHF system.

2017 ◽  
Vol 15 ◽  
pp. 61-67
Author(s):  
Amir Laribi ◽  
Markus Hahn ◽  
Jürgen Dickmann ◽  
Christian Waldschmidt

Abstract. This paper introduces a novel target height estimation approach using a Frequency Modulation Continuous Wave (FMCW) automotive radar. The presented algorithm takes advantage of radar wave multipath propagation to measure the height of objects in the vehicle surroundings. A multipath propagation model is presented first, then a target height is formulated using geometry, based on the presented propagation model. It is then shown from Sensor-Target geometry that height estimation of targets is highly dependent on the radar range resolution, target range and target height. The high resolution algorithm RELAX is discussed and applied to collected raw data to enhance the radar range resolution capability. This enables a more accurate height estimation especially for low targets. Finally, the results of a measurement campaign using corner reflectors at different heights are discussed to show that target heights can be very accurately resolved by the proposed algorithm and that for low targets an average mean height estimation error of 0.03 m has been achieved by the proposed height finding algorithm.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Hua Li ◽  
Jie Zhou

This paper considers the robust estimation fusion problem for distributed multisensor systems with uncertain correlations of local estimation errors. For an uncertain class characterized by the Kullback-Leibler (KL) divergence from the actual model to nominal model of local estimation error covariance, the robust estimation fusion problem is formulated to find a linear minimum variance unbiased estimator for the least favorable model. It is proved that the optimal fuser under nominal correlation model is robust while the estimation error has a relative entropy uncertainty.


2016 ◽  
Vol 33 (2) ◽  
pp. 377-389 ◽  
Author(s):  
Eiichi Yoshikawa ◽  
V. Chandrasekar ◽  
Tomoo Ushio ◽  
Takahiro Matsuda

AbstractA raindrop size distribution (DSD) retrieval method for a weather radar network consisting of several X-band dual-polarization radars is proposed. An iterative maximum likelihood (ML) estimator for DSD retrieval in a single radar was developed in the authors’ previous work, and the proposed algorithm in this paper extends the single-radar retrieval to radar-networked retrieval, where ML solutions in each single-radar node are integrated based on a Bayesian scheme in order to reduce estimation errors and to enhance accuracy. Statistical evaluations of the proposed algorithm were carried out using numerical simulations. The results with eight radar nodes showed that the bias and standard errors are −0.05 and 0.09 in log(Nw); and Nw (mm−1 m−3) and 0.04 and 0.09 in D0 (mm) in an environment with fluctuations in dual-polarization radar measurements (normal distributions with standard deviations of 0.8 dBZ, 0.2 dB, and 1.5° in ZHm, ZDRm, and ΦDPm, respectively). Further error analyses indicated that the estimation accuracy depended on the number of radar nodes, the ranges of varying μ, the raindrop axis ratio model, and the system bias errors in dual-polarization radar measurements.


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 185 ◽  
Author(s):  
Wanli Zhang ◽  
Yanming Di

Model-based clustering with finite mixture models has become a widely used clustering method. One of the recent implementations is MCLUST. When objects to be clustered are summary statistics, such as regression coefficient estimates, they are naturally associated with estimation errors, whose covariance matrices can often be calculated exactly or approximated using asymptotic theory. This article proposes an extension to Gaussian finite mixture modeling—called MCLUST-ME—that properly accounts for the estimation errors. More specifically, we assume that the distribution of each observation consists of an underlying true component distribution and an independent measurement error distribution. Under this assumption, each unique value of estimation error covariance corresponds to its own classification boundary, which consequently results in a different grouping from MCLUST. Through simulation and application to an RNA-Seq data set, we discovered that under certain circumstances, explicitly, modeling estimation errors, improves clustering performance or provides new insights into the data, compared with when errors are simply ignored, whereas the degree of improvement depends on factors such as the distribution of error covariance matrices.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1073
Author(s):  
Yufei Han ◽  
Mengqi Cui ◽  
Shaojun Liu

We study the sensor and relay nodes’ power scheduling problem for the remote state estimation in a Wireless Sensor Network (WSN) with relay nodes over a finite period of time given limited communication energy. We also explain why the optimal infinite time and energy case does not exist. Previous work applied a predefined threshold for the error covariance gap of two contiguous nodes in the WSN to adjust the trade-off between energy consumption and estimation accuracy. However, instead of adjusting the trade-off, we employ an algorithm to find the optimal sensor and relay nodes’ scheduling strategy that achieves the smallest estimation error within the given energy limit under our model assumptions. Our core idea is to unify the sensor-to-relay-node way of error covariance update with the relay-node-to-relay-node way by converting the former way of the update into the latter, which enables us to compare the average error covariances of different scheduling sequences with analytical methods and thus finding the strategy with the minimal estimation error. Examples are utilized to demonstrate the feasibility of converting. Meanwhile, we prove the optimality of our scheduling algorithm. Finally, we use MATLAB to run our algorithm and compute the average estimation error covariance of the optimal strategy. By comparing the average error covariance of our strategy with other strategies, we find that the performance of our strategy is better than the others in the simulation.


2011 ◽  
Vol 383-390 ◽  
pp. 5951-5957 ◽  
Author(s):  
Jian Min Wang ◽  
Shi Xia Tian

This paper analyzes the effects of stator resistance on rotor position estimation accuracy in carrier signal injection based sensorless control of PMSM. Carrier current expressions are derived for both rotating and pulsating voltage injection method when the stator resistance is taken into account. Position estimation errors resulted from stator resistance are analyzed theoretically and investigated by simulation. It is shown that the influences of stator resistance on above two injection methods are quite different. The stator resistance will result in a position estimation error in the rotating voltage injection method. But it does not affect the position estimation accuracy in the pulsating voltage injection method as long as a suitable signal extracting method is used.


2021 ◽  
Vol 15 ◽  
Author(s):  
Iman Chatterjee ◽  
Maja Goršič ◽  
Joshua D. Clapp ◽  
Domen Novak

Physiological responses of two interacting individuals contain a wealth of information about the dyad: for example, the degree of engagement or trust. However, nearly all studies on dyadic physiological responses have targeted group-level analysis: e.g., correlating physiology and engagement in a large sample. Conversely, this paper presents a study where physiological measurements are combined with machine learning algorithms to dynamically estimate the engagement of individual dyads. Sixteen dyads completed 15-min naturalistic conversations and self-reported their engagement on a visual analog scale every 60 s. Four physiological signals (electrocardiography, skin conductance, respiration, skin temperature) were recorded, and both individual physiological features (e.g., each participant’s heart rate) and synchrony features (indicating degree of physiological similarity between two participants) were extracted. Multiple regression algorithms were used to estimate self-reported engagement based on physiological features using either leave-interval-out crossvalidation (training on 14 60-s intervals from a dyad and testing on the 15th interval from the same dyad) or leave-dyad-out crossvalidation (training on 15 dyads and testing on the 16th). In leave-interval-out crossvalidation, the regression algorithms achieved accuracy similar to a ‘baseline’ estimator that simply took the median engagement of the other 14 intervals. In leave-dyad-out crossvalidation, machine learning achieved a slightly higher accuracy than the baseline estimator and higher accuracy than an independent human observer. Secondary analyses showed that removing synchrony features and personality characteristics from the input dataset negatively impacted estimation accuracy and that engagement estimation error was correlated with personality traits. Results demonstrate the feasibility of dynamically estimating interpersonal engagement during naturalistic conversation using physiological measurements, which has potential applications in both conversation monitoring and conversation enhancement. However, as many of our estimation errors are difficult to contextualize, further work is needed to determine acceptable estimation accuracies.


Author(s):  
Donald L. Simon ◽  
Sanjay Garg

A linear point design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multivariable iterative search routine that seeks to minimize the theoretical mean-squared estimation error. This paper derives theoretical Kalman filter estimation error bias and variance values at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared with the conventional approach of tuner selection. Experimental simulation results are found to be in agreement with theoretical predictions. The new methodology is shown to yield a significant improvement in on-line engine performance estimation accuracy.


2019 ◽  
Vol 61 (2) ◽  
pp. 253-259
Author(s):  
Iroshani Kodikara ◽  
Iroshini Abeysekara ◽  
Dhanusha Gamage ◽  
Isurani Ilayperuma

Background Volume estimation of organs using two-dimensional (2D) ultrasonography is frequently warranted. Considering the influence of estimated volume on patient management, maintenance of its high accuracy is empirical. However, data are scarce regarding the accuracy of estimated volume of non-globular shaped objects of different volumes. Purpose To evaluate the volume estimation accuracy of different shaped and sized objects using high-end 2D ultrasound scanners. Material and Methods Globular (n=5); non-globular elongated (n=5), and non-globular near-spherical shaped (n=4) hollow plastic objects were scanned to estimate the volumes; actual volumes were compared with estimated volumes. T-test and one-way ANOVA were used to compare means; P<0.05 was considered significant. Results The actual volumes of the objects were in the range of 10–445 mL; estimated volumes ranged from 6.4–425 mL ( P=0.067). The estimated volume was lower than the actual volume; such volume underestimation was marked for non-globular elongated objects. Regardless of the scanner, the highest volume estimation error was for non-globular elongated objects (<40%) followed by non-globular near-spherical shaped objects (<23.88%); the lowest was for globular objects (<3.6%). Irrespective of the shape or the volume of the object, volume estimation difference among the scanners was not significant: globular (F=0.430, P=0.66); non-globular elongated (F=3.69, P=0.064); and non-globular near-spherical (F=4.00, P=0.06). A good inter-rater agreement (R=0.99, P<0.001) and a good correlation between actual versus estimated volumes (R=0.98, P<0.001) were noted. Conclusion The 2D ultrasonography can be recommended for volume estimation purposes of different shaped and different sized objects, regardless the type of the high-end scanner used.


Author(s):  
Tong Shen ◽  
Tingting Liu ◽  
Yan Lin ◽  
Yongpeng Wu ◽  
Feng Shu ◽  
...  

Abstract In this paper, two regional robust secure precise wireless transmission (SPWT) schemes for multi-user unmanned aerial vehicle (UAV), (1)regional signal-to-leakage-and-noise ratio (SLNR) and artificial-noise-to-leakage-and-noise ratio (ANLNR) (R-SLNR-ANLNR) maximization and (2) point SLNR and ANLNR (P-SLNR-ANLNR) maximization, are proposed to tackle with the estimation errors of the target users’ location. In the SPWT system, the estimation error for SPWT cannot be ignored. However, the conventional robust methods in secure wireless communications optimize the beamforming vector in the desired positions only in statistical means and cannot guarantee the security for each symbol. The proposed regional robust schemes are designed for optimizing the secrecy performance in the whole error region around the estimated location. Specifically, with the known maximal estimation error, we define the target region and wiretap region. Then, we design an optimal beamforming vector and an artificial noise projection matrix, which achieve the confidential signal in the target area having the maximal power while only few signal power is conserved in the potential wiretap region. Instead of considering the statistical distributions of the estimated errors into optimization, we optimize the SLNR and ANLNR of the whole target area, which significantly decreases the complexity. Moreover, the proposed schemes can ensure that the desired users are located in the optimized region, which are more practical than the conventional methods. Simulation results show that our proposed regional robust SPWT design is capable of substantially improving the secrecy rate compared to the conventional non-robust method. The P-SLNR-ANLNR maximization-based method has the comparable secrecy performance with lower complexity than that of the R-SLNR-ANLNR maximization-based method.


Sign in / Sign up

Export Citation Format

Share Document