scholarly journals DNA from lake sediments reveals the long-term dynamics and diversity of <i>Synechococcus</i> assemblages

2013 ◽  
Vol 10 (6) ◽  
pp. 3817-3838 ◽  
Author(s):  
I. Domaizon ◽  
O. Savichtcheva ◽  
D. Debroas ◽  
F. Arnaud ◽  
C. Villar ◽  
...  

Abstract. While picocyanobacteria (PC) are important actors in carbon and nutrient cycles in aquatic systems, factors controlling their interannual dynamics and diversity are poorly known due to the general lack of long-term monitoring surveys. This study intended to fill this gap by applying a DNA-based paleolimnological approach to sediment records from a deep subalpine lake that has experienced dramatic changes in environmental conditions during the last century (eutrophication, re-oligotrophication and large-scale climate changes). In particular, we investigated the long-term (100 yr) diversity and dynamics of Synechococcus,, PC that have presumably been affected by both the lake trophic status changes and global warming. The lake's morphological and environmental conditions provided the ideal conditions for DNA preservation in the sediment archives. Generalised additive models applied to quantitative PCR (qPCR; quantitative Polymerase Chain Reaction) results highlighted that an increase in summer temperature could have a significant positive impact on the relative abundance of Synechococcus, (fraction of Synechococcus, in total cyanobacteria). The diversity of Synechococcus, in Lake Bourget was studied by phylogenetic analyses of the 16S rRNA gene and the following internally transcribed spacer (ITS). Up to 23 different OTUs (based on 16S rRNA), which fell into various cosmopolitan or endemic clusters, were identified in samples from the past 100 yr. Moreover, the study of ITS revealed a higher diversity within the major 16S rRNA-defined OTUs. Changes in PC diversity were related to the lake's trophic status. Overall, qPCR and sequencing results showed that environmental changes (in temperature and phosphorus concentration) affected Synechococcus, community dynamics and structure, translating into changes in genotype composition. These results also helped to re-evaluate the geographical distribution of some Synechococcus, clusters. Providing such novel insights into the long-term history of an important group of primary producers, this study illustrates the promising approach that consists in coupling molecular tools and paleolimnology to reconstruct a lake's biodiversity history.

2013 ◽  
Vol 10 (2) ◽  
pp. 2515-2564 ◽  
Author(s):  
I. Domaizon ◽  
O. Savichtcheva ◽  
D. Debroas ◽  
F. Arnaud ◽  
C. Villar ◽  
...  

Abstract. While picocyanobacteria (PC) are important actors in carbon and nutrient cycles in aquatic systems, factors controlling their interannual dynamics and diversity are poorly known due to the general lack of long-term monitoring surveys. This study intended to fill this gap by applying a DNA-based paleolimnological approach to sediment records from a deep subalpine lake that has experienced dramatic changes in environmental conditions during the last century (eutrophication, re-oligotrophication and large-scale climate changes). We particularly investigated the long-term (100 yr) diversity and dynamics of Synechococcus, PC that have presumably been affected by both the lake trophic status changes and global warming. The lake's morphological and environmental conditions provided ideal conditions for DNA preservation in the sediment archives. Generalised additive models applied to quantitative PCR (qPCR) results highlighted that an increase in summer temperature could have a significant positive impact on the relative abundance of Synechococcus (fraction of Synechococcus in total cyanobacteria). The diversity of Synechococcus in Lake Bourget was studied by phylogenetic analyses of the 16S rRNA gene and internal transcribed spacer (ITS). Up to 23 different OTUs (based on 16S rRNA), which fell into various cosmopolitan or endemic clusters, were identified in samples from the past 100 yr. Moreover, study of the ITS revealed a higher diversity within the major 16S rRNA-defined OTUs. Changes in PC diversity were related to the lake's trophic status. Overall, qPCR and sequencing results showed that environmental changes (here, in temperature and phosphorus concentration) affected Synechococcus community dynamics and structure, translating into changes in genotype composition. These results also helped to re-evaluate the geographical distribution of some Synechococcus clusters. Providing such novel insights into the long-term history of an important group of primary producers, this study illustrates the promising approach that consists in coupling molecular tools and paleolimnology to reconstruct a lake's biodiversity history.


2019 ◽  
Author(s):  
Miguel I. Uyaguari-Diaz ◽  
Matthew A. Croxen ◽  
Kirby Cronin ◽  
Zhiyao Luo ◽  
Judith Isaac-Renton ◽  
...  

AbstractTraditional methods for monitoring the microbiological quality of water focus on the detection of fecal indicator bacteria such as Escherichia coli, often tested as a weekly grab sample. To understand the stability of E.coli concentrations over time, we evaluated three approaches to measuring E. coli levels in water: microbial culture using Colilert, quantitative PCR for uidA and next-generation sequencing of the 16S rRNA gene. Two watersheds, one impacted by agricultural and the other by urban activities, were repeatedly sampled over a simultaneous ten-hour period during each of the four seasons. Based on 16S rRNA gene deep sequencing, each watershed showed different microbial community profiles. The bacterial microbiomes varied with season, but less so within each 10-hour sampling period. Enterobacteriaceae comprised only a small fraction (<1%) of the total community. The qPCR assay detected significantly higher quantities of E. coli compared to the Colilert assay and there was also variability in the Colilert measurements compared to Health Canada’s recommendations for recreational water quality. From the 16S data, other bacteria such as Prevotella and Bacteroides showed promise as alternative indicators of fecal contamination. A better understanding of temporal changes in watershed microbiomes will be important in assessing the utility of current biomarkers of fecal contamination, determining the best timing for sample collection, as well as searching for additional microbial indicators of the health of a watershed.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Brooke A. Clemmons ◽  
Madison T. Henniger ◽  
Phillip R. Myer

Abstract Objectives Extensive efforts have been made to characterize the rumen microbiome under various conditions. However, few studies have addressed the long-term impacts of ruminal microbiome dysbiosis and the extent of host control over microbiome stability. These data can also inform host-microbial symbioses. The objective was to develop preliminary data to measure the changes that occur in the rumen bacterial communities following a rumen content exchange to understand the effects major perturbations may impart upon the rumen microbiome, which may be host-driven. Data description We report here an initial rumen content exchange between two SimAngus (Simmental/Angus) non-pregnant, non-lactating cows of ~ 6 years of age weighing 603.4 ± 37.5 kg. To measure bacterial community succession and acclimation following the exchange, rumen content was collected via rumen cannula at the beginning of the study immediately prior to and following the rumen content exchange, and weekly for 12 weeks. The V4 hypervariable region of the 16S rRNA gene was targeted for DNA sequencing and bacterial analysis. Over 12 weeks, numerous genera and diversity varied, before partial return to pre-exchange metrics. These preliminary data help support potential host control for the rumen microbiome, aiding in efforts to define bovine host-microbe relationships.


2013 ◽  
Vol 778 ◽  
pp. 757-764 ◽  
Author(s):  
Francesca Lanata

Structural design, regardless of construction material, is based mainly on deterministic codes that partially take into account the real structural response under service and environmental conditions. This approach can lead to overdesigned (and expensive) structures. The differences between the designed and the real behaviors are usually due to service loads not taken into account during the design or simply to the natural degradation of materials properties with time. This is particularly true for wood, which is strongly influenced by service and environmental conditions. Structural Health Monitoring can improve the knowledge of timber structures under service conditions, provide information on material aging and follow the degradation of the overall building performance with time.A long-term monitoring control has been planned on a three-floor structure composed by wooden trusses and composite concrete-wood slabs. The structure is located in Nantes, France, and it is the new extension to the Wood Science and Technology Academy (ESB). The main purpose of the monitoring is to follow the long-term structural response from a mechanical and energetic point of view, particularly during the first few service years. Both static and dynamic behavior is being followed through strain gages and accelerometers. The measurements will be further put into relation with the environmental changes, temperature and humidity in particular, and with the operational charges with the aim to improve the comprehension of long-term performances of wooden structures under service. The goal is to propose new improved and optimized methods to make timber constructions more efficient compared to other construction materials (masonry, concrete, steel).The paper will mainly focus on the criteria used to design the architecture of the monitoring system, the parameters to measure and the sensors to install. The first analyses of the measurements will be presented at the conference to have a feedback on the performance of the installed sensors and to start to define a general protocol for the Structural Health Monitoring of such type of timber structures.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3063
Author(s):  
Anton A. Zharov ◽  
Anna N. Neretina ◽  
D. Christopher Rogers ◽  
Svetlana A. Reshetova ◽  
Sofia M. Sinitsa ◽  
...  

Pleistocene water bodies have been studied using the paleolimnological approach, which traces environmental changes using particular subfossils as ecological proxies, rather than analysis of the paleocommunities themselves. Within a given taphocoenosis, the presence and quantity of animals are related to environmental conditions rather than to community types where relationships between taxa are stabilized during their long-term co-occurrence and are (at least partially) more important than the particular environmental conditions at the time of deposition, which may have experienced significant seasonal and inter-seasonal variations. Here, we analyze Branchiopoda (Crustacea) of two paleolocalities in the Transbaikalian Region of Russia: Urtuy (MIS3) and Nozhiy (older than 1.5 million years). Cladocerans Daphnia (Ctenodaphnia) magna, D. (C.) similis, D. (Daphnia) pulex, Ceriodaphnia pulchella-reticulata, C. laticaudata, Simocephalus sp., Moina cf. brachiata, M. macropopa clade, Chydorus cf. sphaericus, Capmtocercus sp. and anostracans Branchinecta cf. paludosa, and Streptocephalus (Streptocephalus) sp. are found in two localities. With the exception of the last taxon, which now occurs in the southern Holarctic, all other taxa inhabit the Transbaikalian Region. Within Eurasia, the steppe zone has the greatest diversity of large branchiopods and a high diversity of some cladocerans, such as subgenus Daphnia (Ctenodaphnia) and Moina sp. Here we demonstrated that the branchiopod community in shallow steppe water bodies has been unchanged since at least the Pleistocene, demonstrating long-term morphological and ecological stasis.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Peter Kusstatscher ◽  
Wisnu Adi Wicaksono ◽  
Alessandro Bergna ◽  
Tomislav Cernava ◽  
Nick Bergau ◽  
...  

Abstract Background The plant phyllosphere is a well-studied habitat characterized by low nutrient availability and high community dynamics. In contrast, plant trichomes, known for their production of a large number of metabolites, are a yet unexplored habitat for microbes. We analyzed the phyllosphere as well as trichomes of two tomato genotypes (Solanum lycopersicum LA4024, S. habrochaites LA1777) by targeting bacterial 16S rRNA gene fragments. Results Leaves, leaves without trichomes, and trichomes alone harbored similar abundances of bacteria (108–109 16S rRNA gene copy numbers per gram of sample). In contrast, bacterial diversity was found significantly increased in trichome samples (Shannon index: 4.4 vs. 2.5). Moreover, the community composition was significantly different when assessed with beta diversity analysis and corresponding statistical tests. At the bacterial class level, Alphaproteobacteria (23.6%) were significantly increased, whereas Bacilli (8.6%) were decreased in trichomes. The bacterial family Sphingomonadacea (8.4%) was identified as the most prominent, trichome-specific feature; Burkholderiaceae and Actinobacteriaceae showed similar patterns. Moreover, Sphingomonas was identified as a central element in the core microbiome of trichome samples, while distinct low-abundant bacterial families including Hymenobacteraceae and Alicyclobacillaceae were exclusively found in trichome samples. Niche preferences were statistically significant for both genotypes and genotype-specific enrichments were further observed. Conclusion Our results provide first evidence of a highly specific trichome microbiome in tomato and show the importance of micro-niches for the structure of bacterial communities on leaves. These findings provide further clues for breeding, plant pathology and protection as well as so far unexplored natural pathogen defense strategies.


2019 ◽  
Vol 85 (7) ◽  
Author(s):  
Alexander Burkert ◽  
Thomas A. Douglas ◽  
Mark P. Waldrop ◽  
Rachel Mackelprang

ABSTRACTPermafrost hosts a community of microorganisms that survive and reproduce for millennia despite extreme environmental conditions, such as water stress, subzero temperatures, high salinity, and low nutrient availability. Many studies focused on permafrost microbial community composition use DNA-based methods, such as metagenomics and 16S rRNA gene sequencing. However, these methods do not distinguish among active, dead, and dormant cells. This is of particular concern in ancient permafrost, where constant subzero temperatures preserve DNA from dead organisms and dormancy may be a common survival strategy. To circumvent this, we applied (i) LIVE/DEAD differential staining coupled with microscopy, (ii) endospore enrichment, and (iii) selective depletion of DNA from dead cells to permafrost microbial communities across a Pleistocene permafrost chronosequence (19,000, 27,000, and 33,000 years old). Cell counts and analysis of 16S rRNA gene amplicons from live, dead, and dormant cells revealed how communities differ between these pools, how they are influenced by soil physicochemical properties, and whether they change over geologic time. We found evidence that cells capable of forming endospores are not necessarily dormant and that members of the classBacilliwere more likely to form endospores in response to long-term stressors associated with permafrost environmental conditions than members of theClostridia, which were more likely to persist as vegetative cells in our older samples. We also found that removing exogenous “relic” DNA preserved within permafrost did not significantly alter microbial community composition. These results link the live, dead, and dormant microbial communities to physicochemical characteristics and provide insights into the survival of microbial communities in ancient permafrost.IMPORTANCEPermafrost soils store more than half of Earth’s soil carbon despite covering ∼15% of the land area (C. Tarnocai et al., Global Biogeochem Cycles 23:GB2023, 2009, https://doi.org/10.1029/2008GB003327). This permafrost carbon is rapidly degraded following a thaw (E. A. G. Schuur et al., Nature 520:171–179, 2015, https://doi.org/10.1038/nature14338). Understanding microbial communities in permafrost will contribute to the knowledge base necessary to understand the rates and forms of permafrost C and N cycling postthaw. Permafrost is also an analog for frozen extraterrestrial environments, and evidence of viable organisms in ancient permafrost is of interest to those searching for potential life on distant worlds. If we can identify strategies microbial communities utilize to survive in permafrost, it may yield insights into how life (if it exists) survives in frozen environments outside of Earth. Our work is significant because it contributes to an understanding of how microbial life adapts and survives in the extreme environmental conditions in permafrost terrains.


2011 ◽  
Vol 61 (3) ◽  
pp. 674-679 ◽  
Author(s):  
Guang-Li Wang ◽  
Li Wang ◽  
Hong-Hong Chen ◽  
Bin Shen ◽  
Shun-Peng Li ◽  
...  

An aerobic, Gram-negative bacterial strain, designated CTN-1T, capable of degrading chlorothalonil was isolated from a long-term chlorothalonil-contaminated soil in China, and was subjected to a polyphasic taxonomic investigation. Strain CTN-1T grew at 15–37 °C (optimum 28–30 °C) and at pH 6.0–9.0 (optimum pH 7.0–7.5). The G+C content of the total DNA was 67.1 mol%. Based on 16S rRNA gene sequence analysis, strain CTN-1T was related most closely to Lysobacter daejeonensis DSM 17634T (97.1 % similarity), L. soli DCY21T (95.7 %), L. concretionis Ko07T (95.5 %), L. gummosus LMG 8763T (95.3 %) and L. niastensis DSM 18481T (95.2 %). The novel strain showed less than 95.0 % 16S rRNA gene sequence similarity to the type strains of other Lysobacter species. The major cellular fatty acids of strain CNT-1T were iso-C16 : 0 (23.0 %), iso-C15 : 0 (21.4 %) and iso-C17 : 1 ω9c (15.3 %). The major isoprenoid quinone was Q-8 (99 %), and the major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. These chemotaxonomic data supported the affiliation of strain CTN-1T to the genus Lysobacter. Levels of DNA–DNA relatedness between strain CTN-1T and L. daejeonensis DSM 17634T were 34.6–36.1 %. Phylogenetic analysis based on 16S rRNA gene sequences, DNA–DNA hybridization data and biochemical and physiological characteristics strongly supported the genotypic and phenotypic differentiation of strain CTN-1T from recognized species of the genus Lysobacter. Strain CTN-1T is therefore considered to represent a novel species of the genus Lysobacter, for which the name Lysobacter ruishenii sp. nov. is proposed. The type strain is CTN-1T (=DSM 22393T =CGMCC 1.10136T).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1083-1088 ◽  
Author(s):  
Kai Chen ◽  
Shu-Kun Tang ◽  
Guang-Li Wang ◽  
Guo-Xing Nie ◽  
Qin-Fen Li ◽  
...  

Bacterial strain 14-2AT, isolated from a long-term DDT-contaminated soil in China, was characterized by using a polyphasic approach to clarify its taxonomic position. Strain 14-2AT was found to be Gram-negative, aerobic, non-spore-forming, non-motile, non-flagellated and rod-shaped. The new isolate was able to grow at 4–42 °C, pH 6.0–9.0 and with 0–5 % NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belongs to the family Sphingobacteriaceae . The 16S rRNA gene sequence of strain 14-2AT showed the highest similarity with Olivibacter oleidegradans TBF2/20.2T (99.4 %), followed by Pseudosphingobacterium domesticum DC-186T (93.8 %), Olivibacter ginsengisoli Gsoil 060T (93.6 %), Olivibacter terrae Jip13T (93.1 %), Olivibacter soli Gsoil 034T (92.8 %) and Olivibacter sitiensis AW-6T (89.6 %). The DNA–DNA hybridization value between strains 14-2AT and O. oleidegradans TBF2/20.2T was 34.45±2.11 %. Strain 14-2AT contained phosphatidylethanolamine, phosphatidylmonomethylethanolamine, aminophospholipid and phosphatidylinositol mannoside as the major polar lipids. The DNA G+C content was 41.2 mol%. MK-7 is the major isoprenoid quinone. Summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), iso-C15 : 0 and iso-C17 : 0 3-OH are the major fatty acids. The phenotypic and chemotaxonomic data confirmed the affiliation of strain 14-2AT to the genus Olivibacter . On the basis of the phylogenetic and phenotypic characteristics, and chemotaxonomic data, strain 14-2AT is considered to represent a novel species of the genus Olivibacter , for which the name Olivibacter jilunii sp. nov. is proposed; the type strain is 14-2AT ( = KCTC 23098T = CCTCC AB 2010105T).


Sign in / Sign up

Export Citation Format

Share Document