scholarly journals Timing of fire relative to seed development may enable non-serotinous species to recolonize from the aerial seed banks of fire-killed trees

2013 ◽  
Vol 10 (7) ◽  
pp. 5061-5078 ◽  
Author(s):  
S. T. Michaletz ◽  
E. A. Johnson ◽  
W. E. Mell ◽  
D. F. Greene

Abstract. The existence of non-serotinous, non-sprouting species in fire regimes where serotiny confers an adaptive advantage is puzzling, particularly when these species recruit poorly from soil seed banks or from burn edges. In this paper, white spruce (Picea glauca (Moench) Voss) was used to show how the timing of fire relative to seed development may permit non-serotinous species to recolonize burned areas from the aerial seed banks of fire-killed trees. To estimate survival of seeds within closed cones during crown fires, cone heating was simulated using a one-dimensional conduction model implemented in a three-dimensional computational fluid dynamics fire behavior model. To quantify the area burned when germinable seed would be contained within closed cones during a mast year, empirical fire occurrence and seed development (germinability and cone opening) data were compared for multiple locations across the white spruce range. Approximately 12% of cones contained viable seed following crown fire simulations (0.072 m s−1 mean spread rate; 9147 kW m−1 mean intensity), and roughly half of the historical area burned resulted from fires that occurred when closed cones would contain germinable seed. Together, these results suggest that non-serotinous species may recolonize burned areas from in situ aerial seed banks, and that this may be an important cause of their existence in fire regimes to which they otherwise seem poorly suited.

2012 ◽  
Vol 9 (11) ◽  
pp. 16705-16751 ◽  
Author(s):  
S. T. Michaletz ◽  
E. A. Johnson ◽  
W. E. Mell ◽  
D. F. Greene

Abstract. The existence of non-serotinous, non-sprouting species in fire regimes where serotiny confers an adaptive advantage is puzzling, particularly when these species recruit poorly from soil seed banks or from burn edges. In this paper, white spruce (Picea glauca (Moench) Voss) was used to show that the timing of fire relative to seed development can control aerial seed bank availability for non-serotinous species. To estimate seed survival in closed cones during crown fires, cone heating was simulated using a one-dimensional conduction model implemented in a computational fluid dynamics (Navier–Stokes) fire spread model. To quantify the area burned when germinable seed would be contained in closed cones, empirical fire occurrence and seed development (germinability and cone opening) data were compared for multiple locations across the white spruce range. Approximately 12% of cones contained viable seed following crown fire simulations (0.072 m s−1 mean spread rate; 9147 kW m−1 mean intensity), and roughly half of the historical area burned resulted from fires that occurred when closed cones would contain germinable seed. Post-fire recruitment from in situ aerial seed banks can occur for non-serotinous species, and may be an important cause of their existence in fire regimes to which they otherwise seem poorly suited.


2019 ◽  
Author(s):  
Lina Teckentrup ◽  
Sandy P. Harrison ◽  
Stijn Hantson ◽  
Angelika Heil ◽  
Joe R. Melton ◽  
...  

Abstract. Understanding how fire regimes change over time is of major importance for understanding their future impact on the Earth system, including society. Large differences in simulated burned area between fire models show that there is substantial uncertainty associated with modelling global change impacts on fire regimes. We draw here on sensitivity simulations made by seven global dynamic vegetation models participating in the Fire Model Intercomparison Project (FireMIP) to understand how differences in models translate into differences in fire regime projections. The sensitivity experiments isolate the impact of the individual drivers of fire, which are prescribed in the simulations. Specifically these drivers are atmospheric CO2, population density, land-use change, lightning and climate. The seven models capture spatial patterns in burned area. However, they show considerable differences in the burned area trends since 1900. We analyse the trajectories of differences between the sensitivity and reference simulation to improve our understanding of what drives the global trend in burned area. Where it is possible, we link the inter-model differences to model assumptions. Overall, these analyses reveal that the strongest differences leading to diverging trajectories are related to the way anthropogenic ignitions and suppression, as well as the effects of land-use on vegetation and fire, are incorporated in individual models. This points to a need to improve our understanding and model representation of the relationship between human activities and fire to improve our abilities to model fire for global change applications. Only two models show a strong response to CO2 and the response to lightning on global scale is low for all models. The sensitivity to climate shows a spatially heterogeneous response and globally only two models show a significant trend. It was not possible to attribute the climate-induced changes in burned area to model assumptions or specific climatic parameters. However, the strong influence of climate on the inter-annual variability in burned area, shown by all the models, shows that we need to pay attention to the simulation of fire weather but also meteorological influences on biomass accumulation and fuel properties in order to better capture extremes in fire behavior.


1945 ◽  
Vol 21 (3) ◽  
pp. 168-192 ◽  
Author(s):  
H. A. Richmond ◽  
R. R. Lejeune

The problem of determining the rate of deterioration from the attacks of wood-boring insects on white spruce saw timber and pulpwood killed and damaged by fire is of considerable importance to foresters, owners and operators. In order that salvage operations may be undertaken promptly to utilize the timber, it is necessary to be able to determine values soon after the damage and to make plans to harvest first those classes of timber subject to the most rapid depreciation, leaving until later those trees least subject to value loss.This investigation initiated in 1941 with the early observation of the prevalence of wood-borers in fire burned areas of white spruce on the Carrot River watershed in Saskatchewan, was followed by intensive investigation during the summer months of 1942 to 1944.The investigation and report will be of great value to those concerned with the salvage utilization of fire-killed and damaged spruce and this work warrants the highest praise for those who undertook this valuable study. Extensive forest fires in 1942 damaged many spruce stands in Manitoba and Saskatchewan which totalled millions of board feet of saw timber and thousands of cords of pulpwood. Due to war-time demand and the high prices prevailing, it was possible and practical to produce and market a high percentage of the accessible stands during the three to four years subsequent to the fire damage.


2008 ◽  
Vol 30 (1) ◽  
pp. 95 ◽  
Author(s):  
D. Turner ◽  
B. Ostendorf ◽  
M. Lewis

Fire is a crucial element in shaping our world, whether of natural or anthropogenic origin. These fires can have both positive and negative consequences and impacts on our natural environment, society and its economics, not to mention global climate. Previous analyses of fire regimes in arid and semi-arid Australia have been of limited spatial or temporal extent. This lack of knowledge has hampered attempts at effective fire management. Satellite imagery allows the continuous detection, monitoring and mapping of fires. Active fires can be detected as fire hotspots, and burned areas mapped as patches from the change of surface reflectance properties in successive images. Data from NOAA’s advanced very high resolution radiometer (AVHRR) were used to assess the distribution, seasonality, frequency, number and extent of fire hotspots (FHS) and fire affected areas (FAA) across the entire arid and semi-arid country of Australia from 1998 to 2004. Utilising both of these fire datasets is important, as they complement each other and provide a more robust analysis of fire patterns. Between 1998 and 2004 almost 27% of arid and semi-arid Australia burnt at least once. The main trends in fire distribution follow latitudinal rainfall gradients. Regression analysis also shows a strong relationship with the pattern of antecedent rainfall. The seasonality of fire events varies between climate zones in accordance with the varying distribution of precipitation and temperature, which influence fuel accumulation and curing. For the first time we have a picture of fire patterns across the entire arid and semi-arid regions of the country. This includes several high fire years in certain areas following above-average rainfall. This analysis highlights similarities and differences between regions, giving policy makers and managers a basis from which to make more informed decisions in the present, and with which to compare future regimes.


1993 ◽  
Vol 3 (2) ◽  
pp. 85 ◽  
Author(s):  
JK Smith ◽  
RD Laven ◽  
PN Omi

Fire behavior research has traditionally used whole burns as sampling units. Numerous burns were required to quantify relationships between pre-burn descriptors, fire behavior, and fire effects. Recent studies have used small plots within burns (called microplots) as the sampling units. This study measured pre-burn descriptors and fire behavior on 0.75-m2 microplots in two Populus tremuloides Michx. burns in north-central Colorado. Microplot estimates of woody fuels, spread rate, and area burned were comparable with measurements from whole burns. Two methods of estimating fire intensity on microplots produced inconsistent results. Juniperus communis L. patches burned more intensely and released more heat than herbaceous areas. Duff characteristics were the most useful pre-burn descriptors for predicting area burned, spread rate, flame length, and total heat release. Microplot sampling on two bums enabled us to relate variability in fire behavior to pre-burn characteristics and to obtain replicate estimates of these relationships.


2010 ◽  
Vol 19 (8) ◽  
pp. 1140 ◽  
Author(s):  
Juha M. Metsaranta

Climate change is expected to increase area burned in the boreal plains ecozone of Canada in the early 21st century (2001–50). I examined the influence of inter-annual variability in area burned and short observed time series on the probability of detecting if an increase has occurred, using a null model of present and future fire regimes. A wide range of fire cycles are consistent with annual area burned in the late 20th century (1959–99). Fire cycles estimated from the reciprocal of the average annual burn fraction over a 50-year period are not very precise, and overestimate the fire cycle if years with large annual area burned have not recently occurred. Under the default assumptions, the probability of detecting a doubling of annual area burned during 2001–50 is 73% if it occurred instantaneously, but only 31% if it occurred gradually. Imprecise estimates and uncertainty in the ability to detect changes in fire cycles poses challenges for implementing aspects of sustainable forest management. Alternate empirical or model-based statistics, such as return periods for annual areas burned of a given magnitude, may be useful for inferring frequencies and magnitudes of large fire years that have not yet been observed.


2019 ◽  
Vol 49 (3) ◽  
pp. 256-269 ◽  
Author(s):  
Chelene C. Hanes ◽  
Xianli Wang ◽  
Piyush Jain ◽  
Marc-André Parisien ◽  
John M. Little ◽  
...  

Contemporary fire regimes of Canadian forests have been well documented based on forest fire records between the late 1950s to 1990s. Due to known limitations of fire datasets, an analysis of changes in fire-regime characteristics could not be easily undertaken. This paper presents fire-regime trends nationally and within two zonation systems, the homogeneous fire-regime zones and ecozones, for two time periods, 1959–2015 and 1980–2015. Nationally, trends in both area burned and number of large fires (≥200 ha) have increased significantly since 1959, which might be due to increases in lightning-caused fires. Human-caused fires, in contrast, have shown a decline. Results suggest that large fires have been getting larger over the last 57 years and that the fire season has been starting approximately one week earlier and ending one week later. At the regional level, trends in fire regimes are variable across the country, with fewer significant trends. Area burned, number of large fires, and lightning-caused fires are increasing in most of western Canada, whereas human-caused fires are either stable or declining throughout the country. Overall, Canadian forests appear to have been engaged in a trajectory towards more active fire regimes over the last half century.


2011 ◽  
Vol 35 (3) ◽  
pp. 393-407 ◽  
Author(s):  
Amy E. Hessl

Fire is a global process affecting both the biosphere and the atmosphere. As a result, measuring rates of change in wildland fire and understanding the mechanisms responsible for such changes are important research goals. A large body of modeling studies projects increases in wildfire activity in future decades, but few empirical studies have documented change in modern fire regimes. Identifying generalizable pathways through which climate change may alter fire regimes is a critical next step for understanding, measuring, and modeling fire under a changing climate. In this progress report, I review recent model-, empirical-, and fire history-based studies of fire and climate change and propose three pathways along which fire regimes might respond to climate change: changes in fuel condition, fuel volume, and ignitions. Model- and empirical-based studies have largely focused on changes in fuel condition with some models projecting up to 50% increases in area burned under a 2 x CO2 climate. Fire history data derived from tree-rings, sediment charcoal, and soil charcoal have helped identify past trajectories of change in fire regimes and can point to possible future conditions. However, most fire history research has focused on changes in area burned and fire frequency. Changes in fire severity may be equally important for the earth system and require further attention. Critical research needs include next generation dynamic vegetation models (DGVMs) that consider changes in vegetation alongside changes in human activities and long fire history records from a variety of vegetation types suitable for validating these DGVMs.


Fire ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 15 ◽  
Author(s):  
Lynda D. Prior ◽  
David M. J. S. Bowman

Developing standardised classification of post-fire responses is essential for globally consistent comparisons of woody vegetation communities. Existing classification systems are based on responses of species growing in fire-prone environments. To accommodate species that occur in rarely burnt environments, we have suggested some important points of clarification to earlier schemes categorizing post-fire responses. We have illustrated this approach using several Australasian conifer species as examples of pyrophobic species. In particular, we suggest using the term “obligate seeder” for the general category of plants that rely on seed to reproduce, and qualifying this to “post-fire obligate seeder” for the narrower category of species with populations that recover from canopy fire only by seeding; the species are typically fire-cued, with large aerial or soil seed banks that germinate profusely following a fire, and grow and reproduce rapidly in order to renew the seed bank before the next fire.


Fire ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 26
Author(s):  
Casey Teske ◽  
Melanie K. Vanderhoof ◽  
Todd J. Hawbaker ◽  
Joe Noble ◽  
John Kevin Hiers

Development of comprehensive spatially explicit fire occurrence data remains one of the most critical needs for fire managers globally, and especially for conservation across the southeastern United States. Not only are many endangered species and ecosystems in that region reliant on frequent fire, but fire risk analysis, prescribed fire planning, and fire behavior modeling are sensitive to fire history due to the long growing season and high vegetation productivity. Spatial data that map burned areas over time provide critical information for evaluating management successes. However, existing fire data have undocumented shortcomings that limit their use when detailing the effectiveness of fire management at state and regional scales. Here, we assessed information in existing fire datasets for Florida and the Landsat Burned Area products based on input from the fire management community. We considered the potential of different datasets to track the spatial extents of fires and derive fire history metrics (e.g., time since last burn, fire frequency, and seasonality). We found that burned areas generated by applying a 90% threshold to the Landsat burn probability product matched patterns recorded and observed by fire managers at three pilot areas. We then created fire history metrics for the entire state from the modified Landsat Burned Area product. Finally, to show their potential application for conservation management, we compared fire history metrics across ownerships for natural pinelands, where prescribed fire is frequently applied. Implications of this effort include increased awareness around conservation and fire management planning efforts and an extension of derivative products regionally or globally.


Sign in / Sign up

Export Citation Format

Share Document