scholarly journals Biomass burning fuel consumption dynamics in the tropics and subtropics assessed from satellite

2016 ◽  
Vol 13 (12) ◽  
pp. 3717-3734 ◽  
Author(s):  
Niels Andela ◽  
Guido R. van der Werf ◽  
Johannes W. Kaiser ◽  
Thijs T. van Leeuwen ◽  
Martin J. Wooster ◽  
...  

Abstract. Landscape fires occur on a large scale in (sub)tropical savannas and grasslands, affecting ecosystem dynamics, regional air quality and concentrations of atmospheric trace gasses. Fuel consumption per unit of area burned is an important but poorly constrained parameter in fire emission modelling. We combined satellite-derived burned area with fire radiative power (FRP) data to derive fuel consumption estimates for land cover types with low tree cover in South America, Sub-Saharan Africa, and Australia. We developed a new approach to estimate fuel consumption, based on FRP data from the polar-orbiting Moderate Resolution Imaging Spectroradiometer (MODIS) and the geostationary Spinning Enhanced Visible and Infrared Imager (SEVIRI) in combination with MODIS burned-area estimates. The fuel consumption estimates based on the geostationary and polar-orbiting instruments showed good agreement in terms of spatial patterns. We used field measurements of fuel consumption to constrain our results, but the large variation in fuel consumption in both space and time complicated this comparison and absolute fuel consumption estimates remained more uncertain. Spatial patterns in fuel consumption could be partly explained by vegetation productivity and fire return periods. In South America, most fires occurred in savannas with relatively long fire return periods, resulting in comparatively high fuel consumption as opposed to the more frequently burning savannas in Sub-Saharan Africa. Strikingly, we found the infrequently burning interior of Australia to have higher fuel consumption than the more productive but frequently burning savannas in northern Australia. Vegetation type also played an important role in explaining the distribution of fuel consumption, by affecting both fuel build-up rates and fire return periods. Hummock grasslands, which were responsible for a large share of Australian biomass burning, showed larger fuel build-up rates than equally productive grasslands in Africa, although this effect might have been partially driven by the presence of grazers in Africa or differences in landscape management. Finally, land management in the form of deforestation and agriculture also considerably affected fuel consumption regionally. We conclude that combining FRP and burned-area estimates, calibrated against field measurements, is a promising approach in deriving quantitative estimates of fuel consumption. Satellite-derived fuel consumption estimates may both challenge our current understanding of spatiotemporal fuel consumption dynamics and serve as reference datasets to improve biogeochemical modelling approaches. Future field studies especially designed to validate satellite-based products, or airborne remote sensing, may further improve confidence in the absolute fuel consumption estimates which are quickly becoming the weakest link in fire emission estimates.

2016 ◽  
Author(s):  
N. Andela ◽  
G. R. van der Werf ◽  
J. W. Kaiser ◽  
T. T. van Leeuwen ◽  
M. J. Wooster ◽  
...  

Abstract. Landscape fires occur on a large scale in (sub)tropical savannas and grasslands, affecting ecosystem dynamics, regional air quality and concentrations of atmospheric trace gasses. Fuel consumption per unit of area burned is an important but poorly constrained parameter in fire emission modelling. We combined satellite-derived burned area with fire radiative power (FRP) data to derive fuel consumption estimates for land cover types with low tree cover in South America, SubSaharan Africa, and Australia. We developed a new approach to estimate fuel consumption, based on FRP data from the polar orbiting MODerate-resolution Imaging Spectroradiometer (MODIS) and the geostationary Spinning Enhanced Visible and Infrared Imager (SEVIRI) in combination with MODIS burned area estimates. The fuel consumption estimates based on the geostationary and polar orbiting instruments showed good agreement in terms of spatial patterns, but absolute fuel consumption estimates remained more uncertain. Fuel consumption varies considerably in space and time, complicating the comparison of various approaches and using field measurements to constrain our results. Spatial patterns in fuel consumption could be partly explained by vegetation productivity and fire return periods. In South America, most fires occurred in savannas with relatively long fire return periods, resulting in comparatively high fuel consumption as opposed to the more frequently burning savannas in Sub-Saharan Africa. Strikingly, we found the infrequently burning interior of Australia having higher fuel consumption than the more productive but frequently burning savannas in northern Australia. Vegetation type also played an important role in explaining the distribution of fuel consumption, both by affecting fuel build up rates and fire return periods. Hummock grasslands, which were responsible for a large share of Australian biomass burning, showed larger fuel build up rates than equally productive grasslands in Africa, although this effect might have been partially driven by the presence of grazers in Africa. Finally, land management in the form of deforestation and agriculture also considerably affected fuel consumption regionally. We conclude that combining FRP and burned area estimates, calibrated against field measurements, is a promising approach in deriving quantitative estimates of fuel consumption. Satellite derived fuel consumption estimates may both challenge our current understanding of spatiotemporal fuel consumption dynamics and serve as reference datasets to improve biogeochemical modelling approaches. Future field studies especially designed to validate satellite-based products, or airborne remote sensing, may further improve confidence in the absolute fuel consumption estimates which are quickly becoming the weakest link in fire emissions estimates.


2015 ◽  
Vol 11 (5) ◽  
pp. 781-788 ◽  
Author(s):  
S. Kloster ◽  
T. Brücher ◽  
V. Brovkin ◽  
S. Wilkenskjeld

Abstract. Changes in fire activity over the last 8000 years are simulated with a global fire model driven by changes in climate and vegetation cover. The changes were separated into those caused through variations in fuel availability, fuel moisture or wind speed, which react differently to changes in climate. Disentangling these controlling factors helps in understanding the overall climate control on fire activity over the Holocene. Globally the burned area is simulated to increase by 2.5% between 8000 and 200 cal yr BP, with larger regional changes compensating nearly evening out on a global scale. Despite the absence of anthropogenic fire ignitions, the simulated trends in fire activity agree reasonably well with continental-scale reconstructions from charcoal records, with the exception of Europe. For some regions the change in fire activity is predominantly controlled through changes in fuel availability (Australia monsoon, Central America tropics/subtropics). For other regions changes in fuel moisture are more important for the overall trend in fire activity (North America, Sub-Saharan Africa, Europe, Asia monsoon). In Sub-Saharan Africa, for example, changes in fuel moisture alone lead to an increase in fire activity between 8000 and 200 cal yr BP, while changes in fuel availability lead to a decrease. Overall, the fuel moisture control is dominating the simulated fire activity for Sub-Saharan Africa. The simulations clearly demonstrate that both changes in fuel availability and changes in fuel moisture are important drivers for the fire activity over the Holocene. Fuel availability and fuel moisture do, however, have different climate controls. As such, observed changes in fire activity cannot be related to single climate parameters such as precipitation or temperature alone. Fire models, as applied in this study, in combination with observational records can help in understanding the climate control on fire activity, which is essential to project future fire activity.


2014 ◽  
Vol 10 (6) ◽  
pp. 4257-4275
Author(s):  
S. Kloster ◽  
T. Brücher ◽  
V. Brovkin ◽  
S. Wilkenskjeld

Abstract. Changes in fire activity over the last 8000 years are simulated with a global fire model driven by changes in climate and vegetation cover. The changes were separated into those caused through variations in fuel availability, fuel moisture or wind speed which react differently to changes in climate. Disentangling these controlling factors helps to understand the overall climate control on fire activity over the Holocene. Globally the burned area is simulated to increase by 2.5% between 8000 and 200 cal yr BP with larger regional changes compensating on a global scale. Despite the absence of anthropogenic fire ignitions, the simulated trends in fire activity agree reasonably well with continental scale reconstructions from charcoal records, with the exception of Europe. For some regions the change in fire activity is predominantly controlled through changes in fuel availability (Australia-Monsoon, American Tropics/Subtropics). For other regions changes in fuel moisture are more important for the overall trend in fire activity (North America, Sub-Saharan Africa, Europe, Asia-Monsoon). In Sub-Saharan Africa, for example, changes in fuel moisture alone lead to an increase in fire activity between 8000 and 200 cal yr BP, while changes in fuel availability lead to a decrease. Overall, the fuel moisture control is dominating the simulated fire activity for Sub-Saharan Africa. The simulations clearly demonstrate that both changes in fuel availability and changes in fuel moisture are important drivers for the fire activity over the Holocene. Fuel availability and fuel moisture do, however, have different climate controls. As such observed changes in fire activity can not be related to single climate parameters such as precipitation or temperature alone. Fire models, as applied in this study, in combination with observational records can help to understand the climate control on fire activity, which is essential to project future fire activity.


2021 ◽  
pp. 1-21
Author(s):  
Samuel Tumwesigye ◽  
Matthias Vanmaercke ◽  
Lisa-Marie Hemerijckx ◽  
Alfonse Opio ◽  
Jean Poesen ◽  
...  

Parasitology ◽  
2016 ◽  
Vol 144 (4) ◽  
pp. 450-458 ◽  
Author(s):  
F. ADDY ◽  
M. WASSERMANN ◽  
F. BANDA ◽  
H. MBAYA ◽  
J. ASCHENBORN ◽  
...  

SUMMARYThe zoonotic cestodeEchinococcus ortleppi(Lopez-Neyra and Soler Planas, 1943) is mainly transmitted between dogs and cattle. It occurs worldwide but is only found sporadically in most regions, with the notable exception of parts of southern Africa and South America. Its epidemiology is little understood and the extent of intraspecific variability is unknown. We have analysed in the present study the genetic diversity among 178E. ortleppiisolates from sub-Saharan Africa, Europe and South America using the complete mitochondrialcox1(1608 bp) andnad1(894 bp) DNA sequences. Genetic polymorphism within the loci revealed 15cox1and sixnad1haplotypes, respectively, and 20 haplotypes of the concatenated genes. Presence of most haplotypes was correlated to geographical regions, and only one haplotype had a wider spread in both eastern and southern Africa. Intraspecific microvariance was low in comparison withEchinococcus granulosussensu stricto, despite the wide geographic range of examined isolates. In addition, the various sub-populations showed only subtle deviation from neutrality and were mostly genetically differentiated. This is the first insight into the population genetics of the enigmatic cattle adaptedEchinococcus ortleppi. It, therefore, provides baseline data for biogeographical comparison amongE. ortleppiendemic regions and for tracing its translocation paths.


Assessment ◽  
2020 ◽  
pp. 107319112092261
Author(s):  
Radosław Rogoza ◽  
Magdalena Żemojtel-Piotrowska ◽  
Peter K. Jonason ◽  
Jarosław Piotrowski ◽  
Keith W. Campbell ◽  
...  

The Dark Triad (i.e., narcissism, psychopathy, Machiavellianism) has garnered intense attention over the past 15 years. We examined the structure of these traits’ measure—the Dark Triad Dirty Dozen (DTDD)—in a sample of 11,488 participants from three W.E.I.R.D. (i.e., North America, Oceania, Western Europe) and five non-W.E.I.R.D. (i.e., Asia, Middle East, non-Western Europe, South America, sub-Saharan Africa) world regions. The results confirmed the measurement invariance of the DTDD across participants’ sex in all world regions, with men scoring higher than women on all traits (except for psychopathy in Asia, where the difference was not significant). We found evidence for metric (and partial scalar) measurement invariance within and between W.E.I.R.D. and non-W.E.I.R.D. world regions. The results generally support the structure of the DTDD.


2020 ◽  
Vol 12 (8) ◽  
pp. 3280 ◽  
Author(s):  
Chindo Sulaiman ◽  
A.S. Abdul-Rahim

This study estimates the impact of wood fuel consumption on economic growth in 19 sub-Saharan African countries over the 1979-2017 period. The study employs dynamic macro-panel estimators, which comprises pooled mean group (PMG), mean group (MG), and dynamic fixed effects (DFE). The estimated result reveals that PMG is the most efficient estimator among the three estimators based on the Hausman h-test. The results from PMG model reveal that wood fuel consumption has significant negative impact on economic growth. Also, when an interaction term between labor and wood fuel consumption was included in the model and estimated, the coefficient of wood fuel consumption yields negative and significant coefficient. This suggests that the interaction term has a negative and significant effect on economic growth. These results unveil that wood fuel consumption negatively and significantly affect economic growth, both directly and indirectly. The policy recommendations from this study are as follows: (1) Governments of these countries should provide adequate and affordable modern fuels to the populace; especially rural dwellers to decrease the use of wood fuel for cooking and heating (2) policy makers should intensify awareness campaign on the risk and danger wood fuel poses to economic growth so as to discourage its use and (3) policy makers should provide adequate solar powered stoves and solar-powered room heaters as cheap substitutes to the use of wood fuel for cooking and heating. These recommendations will assist in negating the negative effects of wood fuel consumption on economic growth of the region.


1998 ◽  
Vol 4 (1) ◽  
pp. 33 ◽  
Author(s):  
A. J. Stattersfield

The first application of the new IUCN threatened species categories to birds is reviewed. The advantage of this system is that it is characterized by clear, objective, quantitative criteria. However, for many species, requisite numerical data are lacking, and the magnitude of potential threats has to be inferred. Numbers of threatened species are compared for South America, sub-Saharan Africa, and Indo-Pacific Islands. Further analysis identifies the most important countries in terms of priority for conservation action for threatened species, the key habitats for their survival and the main dangers faced. The changes between successive Red Lists indicate a possible extinction crisis of considerable magnitude, whereby half the world's birds could disappear in 800 years. Averting this crisis requires identifying and protecting sites where suites of threatened species co-occur.


2018 ◽  
Vol 3 (3) ◽  
pp. 85 ◽  
Author(s):  
W. Secor ◽  
Daniel Colley

The stated goal of the World Health Organization’s program on schistosomiasis is paraphrased as follows: to control morbidity and eliminate transmission where feasible. Switching from a goal of controlling morbidity to interrupting transmission may well be currently feasible in some countries in the Caribbean, some areas in South America, northern Africa, and selected endemic areas in sub-Saharan Africa where there have been improvements in sanitation and access to clean water. However, in most of sub-Saharan Africa, where programmatic interventions still consist solely of annual mass drug administration, such a switch in strategies remains premature. There is a continued need for operational research on how best to reduce transmission to a point where interruption of transmission may be achievable. The level of infection at which it is feasible to transition from control to elimination must also be defined. In parallel, there is also a need to develop and evaluate approaches for achieving and validating elimination. There are currently neither evidence-based methods nor tools for breaking transmission or verifying that it has been accomplished. The basis for these statements stems from numerous studies that will be reviewed and summarized in this article; many, but not all of which were undertaken as part of SCORE, the Schistosomiasis Consortium for Operational Research and Evaluation.


Sign in / Sign up

Export Citation Format

Share Document