The role of coccoliths in protecting <i>Emiliania huxleyi</i> against stressful light and UV radiation
Abstract. Coccolithophores are a group of phytoplankton species which cover themselves with small scales (coccoliths) made of calcium carbonate (CaCO3). The reason why coccolithophores form these calcite platelets has been a matter of debate since decades but has remained elusive so far. One hypothesis is that they serve a role in light/UV protection, especially in surface dwelling species like Emiliania huxleyi which can tolerate exceptionally high levels of solar radiation. In this study, we tested this hypothesis by culturing a calcifying and a non-calcifying strain under different light conditions with and without UV radiation. The coccoliths of E. huxleyi reduced the transmission of visible radiation (400–700 nm) by 7.5 %, UV-A (315–400 nm) by 14.1 % and UVB (280–315 nm) by 18.4 %. Growth rates of the calcifying strain (PML B92/11) were about 2 times higher than those of the non-calcifying strain (CCMP 2090) under indoor constant light levels in the absence of UV radiation. When exposed to outdoor conditions (fluctuating sunlight with UV radiation), growth rates of calcified cells were almost 3.5 times higher compared to naked cells. Furthermore, relative electron transport rate was 114 % higher and non-photochemical quenching (NPQ) 281 % higher in the calcifying compared to the non-calcifying strain, implying higher energy transfer associated with higher NPQ in the presence of calcification. When exposed to natural solar radiation including UV radiation, maximal quantum yield of photosystem II was only slightly reduced in the calcifying but strongly reduced in the non-calcifying strain. Our results reveal an important role of coccoliths in mitigating light and UV stress in E. huxleyi.