scholarly journals Stand age and tree species affect N<sub>2</sub>O and CH<sub>4</sub> exchange from afforested soils

2011 ◽  
Vol 8 (9) ◽  
pp. 2535-2546 ◽  
Author(s):  
J. R. Christiansen ◽  
P. Gundersen

Abstract. Afforestation of former agricultural land is a means to mitigate anthropogenic greenhouse gas emissions. The objectives of this study were (1) to assess the effect of oak (Quercus robur) and Norway spruce (Picea abies [L.] Karst.) stands of different stand ages (13–17 and 40 years after afforestation, respectively) on N2O and CH4 exchange from the soil under these species and (2) identify the environmental factors responsible for the differences in gas exchange between tree species of different ages. N2O and CH4 fluxes (mean ± SE) were measured for two years at an afforested site. No species difference was documented for N2O emission (oak: 4.2 ± 0.7 μg N2O-N m−2 h−1, spruce: 4.0 ± 1 μg N2O-N m−2 h−1) but the youngest stands (1.9 ± 0.3 μg N2O-N m−2 h−1) emitted significantly less N2O than older stands (6.3 ± 1.2 μg N2O-N m−2 h−1). CH4 exchange did not differ significantly between tree species (oak: −8.9 ± 0.9, spruce: −7.7 ± 1) or stand age (young: −7.3 ± 0.9 μg CH4-C m−2 h−1, old: −9.4 ± 1 μg CH4-C m−2 h−1) but interacted significantly; CH4 oxidation in the soil increased with stand age in oak and decreased with age for soils under Norway spruce. We conclude that the exchange of N2O and CH4 from the forest soil undergoes a quick and significant transition in the first four decades after planting in both oak and Norway spruce. These changes are related to (1) increased soil N availability over time as a result of less demand for N by trees in turn facilitating higher N2O production in older stands and (2) decreasing bulk density and increased gas diffusivity in the top soil over time facilitating better exchange of N2O and CH4 with the atmosphere.

2011 ◽  
Vol 8 (3) ◽  
pp. 5729-5760 ◽  
Author(s):  
J. R. Christiansen ◽  
P. Gundersen

Abstract. Afforestation of former agricultural land is a means to mitigate anthropogenic greenhouse gas emissions. The objectives of this study were to assess the effect of pedunculate oak and Norway Spruce of different stand ages (13–17 and 40 yr after afforestation, respectively) on N2O and CH4 exchange and identify the environmental factors responsible for the differences in gas exchange between tree species of different ages. N2O and CH4 fluxes (mean ± SE) were measured for two years at an afforested site. No species difference was documented for N2O emission (oak: 4.2 ± 0.7 μg N2O-N m−2 h−1, spruce: 4.0 ± 1 μg N2O-N m−2 h−1) but the youngest stands (1.9 ± 0.3 μg N2O-N m−2 h−1) emitted significantly less N2O than older stands (6.3 ± 1.2 μg N2O-N m−2 h−1). CH4 exchange did not differ significantly between tree species (oak: −8.9 ± 0.9, spruce: −7.7 ± 1) or stand age (young: −7.3 ± 0.9 μg CH4-C m−2 h−1, old: −9.4 ± 1 μg CH4-C m−2 h−1) but interacted significantly; CH4 oxidation increased with age in oak and decreased with age for Norway Spruce. We conclude that the exchange of N2O and CH4 from the forest soil undergoes a quick and significant transition in the first four decades after planting in both oak and Norway Spruce related to physical changes in the top soil and availability of soil N.


Forests ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 495 ◽  
Author(s):  
Lars Drössler ◽  
Eric Agestam ◽  
Kamil Bielak ◽  
Małgorzata Dudzinska ◽  
Julia Koricheva ◽  
...  

Pine-spruce forests are one of the commonest mixed forest types in Europe and both tree species are very important for wood supply. This study summarized nine European studies with Scots pine and Norway spruce where a mixed-species stand and both monocultures were located in an experimental set-up. Overyielding (where growth of a mixed stand was greater than the average of both monocultures) was relatively common and often ranged between 0% and 30%, but could also be negative at individual study sites. Each individual site demonstrated consistent patterns of the mixing effect over different measurement periods. Transgressive overyielding (where the mixed-species stand was more productive than either of the monocultures) was found at three study sites, while a monoculture was more productive on the other sites. Large variation between study sites indicated that the existing experiments do not fully represent the extensive region where this mixed pine-spruce forest can occur. Pooled increment data displayed a negative influence of latitude and stand age on the mixing effect of those tree species in forests younger than 70 years.


Soil Research ◽  
2012 ◽  
Vol 50 (2) ◽  
pp. 167 ◽  
Author(s):  
Danju Zhang ◽  
Jian Zhang ◽  
Wanqin Yang ◽  
Fuzhong Wu

It is generally believed that plantations of Eucalyptus bring about a decrease in soil fertility. Soil physicochemical and microbiological properties were measured across a range of E. grandis plantation ages (1–10 years) in south-western China to determine whether and how eucalypt afforestation of agricultural land affected the soil fertility. The results indicate that afforestation with E. grandis caused changes in soil properties with soil depth, and the changes were dependent on the stand age. Soil bulk density decreased significantly, but water-holding capacity increased significantly with time. Soil organic matter content, C : N ratio, and soil microbial biomass C and N concentrations showed an initial phase of decline and then increased significantly over time in the upper soil layers of E. grandis plantations aged from 1 to 4 or 5 years. Soil pH in E. grandis plantations did not change significantly with stand age or soil layer. Cation exchange capacity in the upper soil layer of E. grandis plantations increased significantly over time. Total exchangeable bases and base saturation in the soil decreased significantly with depth and with increasing plantation age. Furthermore, E. grandis afforestation of arable soils had no significant effects on total N, total P, and available P contents. The requirements of the trees, understory microenvironmental conditions, and allelopathic effects might play important roles in the dynamic changes of soil physicochemical and microbiological properties. The results demonstrate the progressive development of processes that lead to the restoration of soil fertility following E. grandis afforestation of arable soils. However, most of the properties measured for the afforested soils resembled the properties of arable soils and did not resemble those of the soil of control forests. Thus, reversion of soil properties in the study plantations is likely to require a considerable period of time. Long-term research is needed to understand changes in the soil properties resulting from afforestation with Eucalyptus and to predict future trends.


2012 ◽  
Vol 9 (2) ◽  
pp. 867-874 ◽  
Author(s):  
K. K. McLauchlan ◽  
J. M. Craine

Abstract. Humans have drastically altered the global nitrogen (N) cycle, and these alterations have begun to affect a variety of ecosystems. In North America, N deposition rates are highest in the central US, yet there are few studies that examine whether N availability has been increasing to different tree species in the forests of the region. To determine the species-specific trajectories of N availability in secondary temperate forests experiencing high N deposition, we measured the N concentrations and composition of stable N isotopes in wood of four tree species from six hardwood forest remnants in northern Indiana, USA. Annual nitrogen deposition rates averaged 5.8 kg ha−1 from 2000 to 2008 in this region. On average, wood δ15N values in Quercus alba have been increasing steadily over the past 100 years. In contrast, wood δ15N values have been declining in three other hardwood species – Acer saccharum, Carya ovata, and Fagus grandifolia – over the same time period. The species-specific trends suggest a change in the partitioning of ammonium and nitrate among species, due to an increase in nitrification rates over time. With no apparent net change in wood δ15N over the past century at the stand level, there is currently little evidence for consistent trends in stand-level N availability over time in the Indiana forests.


2016 ◽  
Vol 73 (2) ◽  
pp. 437-447 ◽  
Author(s):  
Enrique Andivia ◽  
Victor Rolo ◽  
Mathieu Jonard ◽  
Pavel Formánek ◽  
Quentin Ponette

2021 ◽  
Author(s):  
Jan Vopravil ◽  
Pavel Formánek ◽  
Jaroslava Janků ◽  
Ondřej Holubík ◽  
Tomáš Khel

Afforestation of less productive, risky and degraded agricultural land is one of the methods which is recommended for practical agriculture to increase the carbon sequestration. In this study, we have attempted to determine the effect of afforestation of agricultural land (warm, mildly dry climatic region of the Czech Republic) on the soil organic carbon (C<sub>ox</sub>) concentrations in the mineral soil. Two soil types (Haplic Chernozem and Haplic Cambisol) were afforested. Both an indirect estimation (loss-on-ignition method) as well as chromsulfuric acid mixture oxidation were used to determine the organic carbon content in the soil samples and the methods were compared. In the case of the Haplic Chernozem, the C<sub>ox</sub> concentration at a depth of 0–10 cm after 1–3 years of afforestation with pedunculate oak or Scots pine significantly decreased (P &lt; 0.01 and P &lt; 0.004, respectively) with the stand age. Similar to the case of the Haplic Chernozem, the C<sub>ox</sub> concentration in the Haplic Cambisol also significantly decreased in the variants with Scots pine (P &lt; 0.003) or a mixture of forest tree species (P &lt; 0.006); no significant (P &gt; 0.05) decrease was found in the case of a mixture of forest tree species on the Haplic Chernozem or with Douglas fir on the Haplic Cambisol. Significantly higher (P &lt; 0.05) C<sub>ox</sub> concentrations were typically found in the case of 1-year-old stands compared to 2-year-old or 3-year-old stands. A higher C<sub>ox</sub> loss than the quantity of residues returned to the soils may be the reason the soil C<sub>ox</sub> concentration significantly (P &lt; 0.00001 and P &lt; 0.000001) decreased for the control agricultural plots (Haplic Chernozem and Haplic Cambisol). The carbon stock in the upper 10 cm of the 5-year-old stands was higher on the Haplic Chernozem and lower on the Haplic Cambisol compared to the control agricultural plots.


2006 ◽  
Vol 36 (5) ◽  
pp. 1218-1235 ◽  
Author(s):  
Steven G Newmaster ◽  
F Wayne Bell ◽  
Christopher R Roosenboom ◽  
Heather A Cole ◽  
William D Towill

Plantations have been claimed to be "monocultures", or "biological deserts". We investigated these claims in the context of a long-term study on plant diversity within plantations with different indigenous tree species, spacings, and soil types that were compared with 410 native stands. Soil type had no influence on plantation species diversity or abundance, and wider spacing resulted in higher richness, lower woody plant abundance, slightly higher cover of herbaceous plants, and large increases in cryptogam cover. We also found a canopy species × spacing interaction effect, where the impact of increased spacing on understory vegetation was more pronounced in spruce than in pine plantations. The dynamic community interactions among species of feathermoss appear to be in response to the physical impediment from varying amounts of needle rain from the different tree species. High light interception and needle fall were negatively correlated with understory plant diversity, as was lack of structural diversity. This study indicates that through afforestation efforts agricultural lands can be restored to productive forests that can harbour nearly one-half of the plant species found in equivalent natural forests within the same geographic region in as little as 50 years. We recommend applying afforestation using indigenous conifer species as a first step towards rehabilitating conifer forests that have been converted to agriculture and subsequently abandoned.


2017 ◽  
Vol 76 (8) ◽  
pp. 2158-2166 ◽  
Author(s):  
Ying-Hua Li ◽  
Hai-Bo Li ◽  
Xin-Yang Xu ◽  
Si-Yao Xiao ◽  
Si-Qi Wang ◽  
...  

In this field study, the impacts of influent loadings and drying-wetting cycles on N2O emission in a subsurface wastewater infiltration (SWI) system were investigated. N2O emitted under different operation conditions were quantified using static chamber and gas chromatograph techniques. N2O conversion rate decreased from 6.6 ± 0.1% to 2.7 ± 0.1% with an increase in hydraulic loading (HL) from 0.08 to 0.24 m3/m2·d. By contrast, N2O conversion rate increased with increasing pollutant loading (PL) up to 8.2 ± 0.5% (PL 4.2 g N/m2·d) above which conversion rate decreased, confirming that N2O production was under the interaction of nitrification and denitrification. Taking into consideration the pollutants (chemical oxygen demand (COD), NH4+-N, NO3−-N and total nitrogen (TN)) removal ratio and N2O emission, optimal loading ranges and drying-wetting modes were suggested as HL 0.08–0.12 m3/m2·d, PL 3.2–3.7 g N/m2·d and 12 h:12 h, respectively. The results revealed that in SWI systems, conversion ratio of influent nitrogen to N2O could be between 4.5% and a maximum of 7.0%.


2013 ◽  
Vol 10 (3) ◽  
pp. 1751-1773 ◽  
Author(s):  
D. R. Cameron ◽  
M. Van Oijen ◽  
C. Werner ◽  
K. Butterbach-Bahl ◽  
R. Grote ◽  
...  

Abstract. Forests are important components of the greenhouse gas balance of Europe. There is considerable uncertainty about how predicted changes to climate and nitrogen deposition will perturb the carbon and nitrogen cycles of European forests and thereby alter forest growth, carbon sequestration and N2O emission. The present study aimed to quantify the carbon and nitrogen balance, including the exchange of greenhouse gases, of European forests over the period 2010–2030, with a particular emphasis on the spatial variability of change. The analysis was carried out for two tree species: European beech and Scots pine. For this purpose, four different dynamic models were used: BASFOR, DailyDayCent, INTEGRATOR and Landscape-DNDC. These models span a range from semi-empirical to complex mechanistic. Comparison of these models allowed assessment of the extent to which model predictions depended on differences in model inputs and structure. We found a European average carbon sink of 0.160 ± 0.020 kgC m−2 yr−1 (pine) and 0.138 ± 0.062 kgC m−2 yr−1 (beech) and N2O source of 0.285 ± 0.125 kgN ha−1 yr−1 (pine) and 0.575 ± 0.105 kgN ha−1 yr−1 (beech). The European average greenhouse gas potential of the carbon sink was 18 (pine) and 8 (beech) times that of the N2O source. Carbon sequestration was larger in the trees than in the soil. Carbon sequestration and forest growth were largest in central Europe and lowest in northern Sweden and Finland, N. Poland and S. Spain. No single driver was found to dominate change across Europe. Forests were found to be most sensitive to change in environmental drivers where the drivers were limiting growth, where changes were particularly large or where changes acted in concert. The models disagreed as to which environmental changes were most significant for the geographical variation in forest growth and as to which tree species showed the largest rate of carbon sequestration. Pine and beech forests were found to have differing sensitivities to environmental change, in particular the response to changes in nitrogen and precipitation, with beech forest more vulnerable to drought. There was considerable uncertainty about the geographical location of N2O emissions. Two of the models BASFOR and LandscapeDNDC had largest emissions in central Europe where nitrogen deposition and soil nitrogen were largest, whereas the two other models identified different regions with large N2O emission. N2O emissions were found to be larger from beech than pine forests and were found to be particularly sensitive to forest growth.


2018 ◽  
Vol 285 (1885) ◽  
pp. 20181240 ◽  
Author(s):  
Xiaojuan Liu ◽  
Stefan Trogisch ◽  
Jin-Sheng He ◽  
Pascal A. Niklaus ◽  
Helge Bruelheide ◽  
...  

Forest ecosystems are an integral component of the global carbon cycle as they take up and release large amounts of C over short time periods (C flux) or accumulate it over longer time periods (C stock). However, there remains uncertainty about whether and in which direction C fluxes and in particular C stocks may differ between forests of high versus low species richness. Based on a comprehensive dataset derived from field-based measurements, we tested the effect of species richness (3–20 tree species) and stand age (22–116 years) on six compartments of above- and below-ground C stocks and four components of C fluxes in subtropical forests in southeast China. Across forest stands, total C stock was 149 ± 12 Mg ha −1 with richness explaining 28.5% and age explaining 29.4% of variation in this measure. Species-rich stands had higher C stocks and fluxes than stands with low richness; and, in addition, old stands had higher C stocks than young ones. Overall, for each additional tree species, the total C stock increased by 6.4%. Our results provide comprehensive evidence for diversity-mediated above- and below-ground C sequestration in species-rich subtropical forests in southeast China. Therefore, afforestation policies in this region and elsewhere should consider a change from the current focus on monocultures to multi-species plantations to increase C fixation and thus slow increasing atmospheric CO 2 concentrations and global warming.


Sign in / Sign up

Export Citation Format

Share Document