european forests
Recently Published Documents


TOTAL DOCUMENTS

365
(FIVE YEARS 93)

H-INDEX

57
(FIVE YEARS 8)

2022 ◽  
Vol 14 (2) ◽  
pp. 395
Author(s):  
Christoph Pucher ◽  
Mathias Neumann ◽  
Hubert Hasenauer

Today, European forests face many challenges but also offer opportunities, such as climate change mitigation, provision of renewable resources, energy and other ecosystem services. Large-scale analyses to assess these opportunities are hindered by the lack of a consistent, spatial and accessible forest structure data. This study presents a freely available pan-European forest structure data set. Building on our previous work, we used data from six additional countries and consider now ten key forest stand variables. Harmonized inventory data from 16 European countries were used in combination with remote sensing data and a gap-filling algorithm to produce this consistent and comparable forest structure data set across European forests. We showed how land cover data can be used to scale inventory data to a higher resolution which in turn ensures a consistent data structure across sub-regional, country and European forest assessments. Cross validation and comparison with published country statistics of the Food and Agriculture Organization (FAO) indicate that the chosen methodology is able to produce robust and accurate forest structure data across Europe, even for areas where no inventory data were available.


2021 ◽  
Author(s):  
Anja Bindewald ◽  
Giuseppe Brundu ◽  
Silvio Schueler ◽  
Uwe Starfinger ◽  
Jürgen Bauhus ◽  
...  

2021 ◽  
Vol 132 ◽  
pp. 108266
Author(s):  
Sabina Burrascano ◽  
Giovanni Trentanovi ◽  
Yoan Paillet ◽  
Jacob Heilmann-Clausen ◽  
Paolo Giordani ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1656
Author(s):  
Petr Kupec ◽  
Jan Deutscher ◽  
Martyn Futter

In this study, we present evidence for a hydrological regime shift in upland central European forests. Using a combination of long-term data, detailed field measurements and modelling, we show that there is a prolonged and persistent decline in annual runoff: precipitation ratios that is most likely linked to longer growing seasons. We performed a long term (1950–2018) water balance simulation for a Czech upland forest headwater catchment calibrated against measured streamflow and transpiration from deciduous and coniferous stands. Simulations were corroborated by long-term (1965–2018) borehole measurements and historical drought reports. A regime shift from positive to negative catchment water balances likely occurred in the early part of this century. Since 2007, annual runoff: precipitation ratios have been below the long-term average. Annual average temperatures have increased, but there have been no notable long term trends in precipitation. Since 1980, there has been a pronounced April warming, likely leading to earlier leaf out and higher annual transpiration, making water unavailable for runoff generation and/or soil moisture recharge. Our results suggest a regime shift due to second order effects of climate change where increased transpiration associated with a longer growing season leads to a shift from light to water limitation in central European forests. This will require new approaches to managing forests where water limitation has previously not been a problem.


2021 ◽  
Vol 78 (4) ◽  
Author(s):  
Marco Ferretti

Abstract Key message Future international forest monitoring should build upon the existing pan-European programs. There is a renewed interest in the monitoring of European forests. Future monitoring systems should build upon existing international programs, making use of their strengths and solving their weaknesses. This approach will result into win–win solutions for both the existing and future systems. The UNECE ICP Forests has a number of characteristics that makes it a very good and strong basis for developing an advanced international forest monitoring system.


2021 ◽  
Author(s):  
Jan-Peter George ◽  
Tanja GM Sanders ◽  
Mathias Neumann ◽  
Carmelo Cammalleri ◽  
Juergen V. Vogt ◽  
...  

European forests are an important source for timber production, human welfare, income, protection and biodiversity. During the last two decades, Europe has experienced a number of droughts which were exceptionally within the last 500 years both in terms of duration and intensity and these droughts seem to left remarkable imprints in the mortality dynamics of European forests. However, systematic observations on tree decline with emphasis on single species together with high-resolution drought data has been scarce so far so that deeper insights into mortality dynamics and drought occurrence is still limiting our understanding at continental scale. Here we make use of the ICP Forest crown defoliation dataset, permitting us to retrospectively monitor tree mortality for four major conifers, two major broadleaves as well as a pooled dataset of nearly all minor tree species in Europe. In total, we analysed more than 3 million observations gathered during the last 25 years and employed a high-resolution drought index which is able to assess soil moisture anomaly based on a hydrological water-balance and runoff model every ten days globally. We found significant overall and species-specific increasing trends in mortality rates accompanied by decreasing soil moisture. A generalized linear model identified previous-year soil moisture anomaly as the most important driver of mortality patterns in European forests. Significant interactions appeared between previous-year soil moisture and stand water regime in conifers, strongly suggesting that conifers growing at productive sites are more vulnerable under drought. We conclude that mortality patterns in European forests are currently reaching a concerning upward trend which could be further accelerated by global change-type droughts.


Author(s):  
Martin Bergman ◽  
Jochen Smolka ◽  
Dan-Eric Nilsson ◽  
Almut Kelber

AbstractCombining studies of animal visual systems with exact imaging of their visual environment can get us a step closer to understand how animals see their “Umwelt”. Here, we have combined both methods to better understand how males of the speckled wood butterfly, Pararge aegeria, see the surroundings of their perches. These males are well known to sit and wait for a chance to mate with a passing females, in sunspot territories in European forests. We provide a detailed description of the males' body and head posture, viewing direction, visual field and spatial resolution, as well as the visual environment. Pararge aegeria has sexually dimorphic eyes, the smallest interommatidial angles of males are around 1°, those of females 1.5°. Perching males face the antisolar direction with their retinal region of the highest resolution pointing at an angle of about 45° above the horizon; thus, looking at a rather even and dark background in front of which they likely have the best chance to detect a sunlit female passing through the sunspot.


2021 ◽  
Author(s):  
Stef Haesen ◽  
Jonas J. Lembrechts ◽  
Pieter De Frenne ◽  
Jonathan Lenoir ◽  
Juha Aalto ◽  
...  
Keyword(s):  

2021 ◽  
Vol 498 ◽  
pp. 119552
Author(s):  
Jan Leidinger ◽  
Markus Blaschke ◽  
Michael Ehrhardt ◽  
Anton Fischer ◽  
Martin M. Gossner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document