Application of hollow fibre membrane reactor for biological removal of H2S

2020 ◽  
Author(s):  
Jewel Das ◽  
Harish Ravishankar ◽  
Piet Lens

<p>Hydrogen sulfide (H<sub>2</sub>S) is a toxic pollutant and harmful to human health. Industries such as pulp and paper manufacturing, rayon production, natural gas extraction and refining, and crude petroleum refineries generate waste gas streams with high H<sub>2</sub>S concentrations. Both physico-chemical and biological methods are used for H<sub>2</sub>S removal from the gas stream. Biological methods offer several advantages such as environmental friendly, less expensive and require simple operation and maintenance compared to physico-chemical methods. In this study, a hydrophilic hollow fibre membrane (HFM) based bioreactor configuration has been tested for biological H<sub>2</sub>S removal. Three reactors were fabricated and operated for ~ 3 months where two reactors were used for biological conversion process and the third reactor was used for abiotic process. The effective membrane area of a HFM module used in each reactor was 0.0138 m<sup>2</sup>. The bioreactors demonstrated efficient gas-liquid mass transfer through the HFM module and achieved ~ 99% removal efficiency with an elimination capacity of ~ 17.0 g m<sup>-3</sup> h<sup>-1</sup>. The H<sub>2</sub>S flux of the bioreactor was ~ 0.20 g m<sup>-2</sup> day<sup>-1</sup> which was ~ 9 times higher than the abiotic reactor for an inlet H<sub>2</sub>S concentration of ~ 0.90 g m<sup>-3</sup>. The overall mass transfer coefficient value for the biotic process was 17.2 µm s<sup>-1</sup> which was ~ 25 times higher than the abiotic process. The bioreactors demonstrated both microbial attached growth on the membrane surface and suspended growth in the liquid phase. Microbial community analysis confirmed the presence of diverse sulfur-oxidizing bacteria at genus level including <em>Acinetobacter</em>, <em>Dechloromonas</em>, <em>Hydrogenophaga</em>, <em>Rhodopseudomonas</em> and <em>Sulfurospirillum</em>. Moreover, the enrichment of other bacterial genera such as ammonia-oxidizing (e.g. <em>Nitrosospira</em>), organic matter degrading (e.g. <em>Trichococcus</em>) and methanogenic (e.g. <em>Methanosaeta</em>) microorganisms demonstrate the diverse microbial ecology of the sludge growing in the bioreactor.</p>

Author(s):  
Muthia Elma ◽  
Mahmud Mahmud ◽  
Nurul Huda ◽  
Zaini L Assyaifi ◽  
Elsa Nadia Pratiwi ◽  
...  

The clean water crisis is increasing along with the increasing human population. Sea water is one of the largest water sources that can be utilized on the earth. However, the high salt concentration dissolved in seawater must be treated before it can use. Desalination is the directly technology for treating seawater with PVDF-TiO2 hollow fibre membrane via pervaporation process. The aim of this research was to determine the performance of PVDF-TiO2 hollow fibre membrane against variations in feed temperature in the artificial seawater pervaporation process. Method for fabrication membrane is using dry-wet spinning method. The result showed that the highest flux permeat occurred at feed temperature of 60ºC, namely 8.96 kg.m-2.h-1 with salt rejection > 92.86%. The result via SEM showed that of the membrane surface morphology, there is a white spot on the membrane surface is TiO2 because the dope solution is too thick. The PVDF-TiO2 hollow fiber membrane in this research is can be applied for seawater pervaporation.


1994 ◽  
Vol 22 (3) ◽  
pp. 537-547 ◽  
Author(s):  
G.F.H. Kramer ◽  
S.Th. Bouwer ◽  
R.W. van Gemert ◽  
J.T.P. Derksen ◽  
F.P. Cuperus

2016 ◽  
Vol 14 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Sina Gilassi ◽  
Nejat Rahmanian

AbstractA mass transfer model was developed to capture CO2 from a gas mixture in hollow fibre membrane contactors under laminar flow conditions. The axial and radial diffusions through membrane and convection in tube and shell sides with chemical reaction were investigated. COMSOL software was used to numerically solve a system of non-linear equations with boundary conditions by use of the finite element method. Three different amine solutions of monoethanolamine (MEA), diethanolamine (DEA) and n-methyldiethanolamine (MDEA) were chosen as absorbent in lumen to consider the mass transfer rate of CO2 and its removal efficiency. The modelling results were compared with experimental data available in the literature and a good agreement was observed. The CFD results revealed that MEA had the best performance for CO2 removal as compared to DEA and MDEA under various operating conditions due to the different CO2 loading factor of absorbents. Furthermore, efficiency of CO2 removal was highly dependent on the absorbent concentration and flow rate, increasing of the gas flow rate caused a reduction in gas residence time in the shell and consequently declined CO2 mass transfer. The modelling results showed the effect of absorbent concentration on the CO2 mass transfer was improved due to availability of absorbent reactants at the gas-liquid interface.


Perfusion ◽  
1998 ◽  
Vol 13 (5) ◽  
pp. 353-359 ◽  
Author(s):  
Xavier M Mueller ◽  
Hendrick T Tevaearai ◽  
Monique Augstburger ◽  
Judith Horisberger ◽  
L K von Segesser

Membrane oxygenators have now gained wide acceptance. A new hollow-fibre membrane oxygenator, the Dideco D903 Avant 1.7, with an optimized membrane surface (1.7 m2) and a wavy blood flow pattern, was tested for gas transfer and blood path resistance in a standardized setting with surviving animals. Three calves (mean body weight 63.29 ± 2.9 kg) were connected to cardiopulmonary bypass by jugular venous and carotid arterial cannulation, classic roller pump and the Dideco D903 oxygenator with a mean flow rate of 53 ± 0.1 ml/kg/min for 6 h. After this time, the animals were weaned from the CPB and thereafter from the ventilator. After 7 days, the animals were killed electively. Blood gas analysis was performed before bypass, after mixing (10 min) and then hourly for the 6 h of perfusion. Further samples were taken 30 min (spontaneous breathing) and 60 min after bypass (extubated). Physiological blood gas values could be maintained throughout perfusion in all animals. Mean arterial oxygen saturation varied between 99.3% and 99.7% for the arterial side of the oxygenator compared to 64.6% and 71% for the venous side. The highest mean pressure drop through the oxygenator was 54 mmHg. Postbypass blood gas analysis showed physiological values and no evidence of major lung trauma or pulmonary oedema in relation to the 6 h perfusion. The hollow-fibre membrane oxygenator, Dideco D903, offers excellent gas exchange capabilities and a low pressure drop under experimental conditions, despite reduced membrane surface area. The post mortem examination did not show any deleterious lesion.


2006 ◽  
Vol 54 (10) ◽  
pp. 185-192 ◽  
Author(s):  
H. Nagaoka ◽  
M. Kurosaka ◽  
N. Shibata ◽  
M. Kobayashi

This study is aimed at elucidating the mechanism by which rising air bubbles induce shear stress on hollow fibre membrane surfaces. Shear stress on hollow fibre membrane surfaces (laterally-set and vertically-set) caused by aeration was measured directly using a two-direction load sensor. In the laterally-set hollow fibre module, time-averaged upward-direction shear stress on the membrane surface was compared to theoretical shear stress values considering the effect of water flow on membrane surface. Measured time-average shear stress values were almost 200 times larger than theoretical values implying strong interactions between bubbles and solid surface. In the vertically-set membrane module, velocity measurement of bubble flow using laser Doppler velocimeter revealed that drag force working on membrane surface was closely related to upward-direction water velocity. Also fluctuation of drag force and shear force on membrane surface was found to be related to velocity fluctuation (turbulence).


2017 ◽  
Vol 523 ◽  
pp. 235-246 ◽  
Author(s):  
C.Y. Wang ◽  
E. Mercer ◽  
F. Kamranvand ◽  
L. Williams ◽  
A. Kolios ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document