scholarly journals An assessment of climate state reconstructions obtained using particle filtering methods

2013 ◽  
Vol 9 (1) ◽  
pp. 43-74
Author(s):  
S. Dubinkina ◽  
H. Goosse

Abstract. In an idealized framework, we assess reconstructions of the climate state of the Southern Hemisphere during the past 150 yr using the climate model of intermediate complexity LOVECLIM and three data-assimilation methods: a nudging, a particle filter with sequential importance resampling, and an extremely efficient particle filter. The methods constrain the model by pseudo-observations of surface air temperature anomalies obtained from a twin experiment using the same model but different initial conditions. The net of the pseudo-observations is chosen to be either dense (when the pseudo-observations are given at every grid cell of the model) or sparse (when the pseudo-observations are given at the same locations as the dataset of instrumental surface temperature records HADCRUT3). All three data-assimilation methods provide with good estimations of surface air temperature and of sea ice concentration, with the extremely efficient particle filter having the best performance. When reconstructing variables that are not directly linked to the pseudo-observations of surface air temperature as atmospheric circulation and sea surface salinity, the performance of the particle filters is weaker but still satisfactory for many applications. Sea surface salinity reconstructed by the nudging, however, exhibits a patterns opposite to the pseudo-observations, which is due to a spurious impact of the nudging on the ocean mixing.

2013 ◽  
Vol 9 (3) ◽  
pp. 1141-1152 ◽  
Author(s):  
S. Dubinkina ◽  
H. Goosse

Abstract. Using the climate model of intermediate complexity LOVECLIM in an idealised framework, we assess three data-assimilation methods for reconstructing the climate state. The methods are a nudging, a particle filter with sequential importance resampling, and a nudging proposal particle filter and the test case corresponds to the climate of the high latitudes of the Southern Hemisphere during the past 150 yr. The data-assimilation methods constrain the model by pseudo-observations of surface air temperature anomalies obtained from the same model, but different initial conditions. All three data-assimilation methods provide with good estimations of surface air temperature and of sea ice concentration, with the nudging proposal particle filter obtaining the highest correlations with the pseudo-observations. When reconstructing variables that are not directly linked to the pseudo-observations such as atmospheric circulation and sea surface salinity, the particle filters have equivalent performance and their correlations are smaller than for surface air temperature reconstructions but still satisfactory for many applications. The nudging, on the contrary, obtains sea surface salinity patterns that are opposite to the pseudo-observations, which is due to a spurious impact of the nudging on vertical exchanges in the ocean.


2005 ◽  
Vol 18 (16) ◽  
pp. 3217-3228 ◽  
Author(s):  
D. W. Shin ◽  
S. Cocke ◽  
T. E. LaRow ◽  
James J. O’Brien

Abstract The current Florida State University (FSU) climate model is upgraded by coupling the National Center for Atmospheric Research (NCAR) Community Land Model Version 2 (CLM2) as its land component in order to make a better simulation of surface air temperature and precipitation on the seasonal time scale, which is important for crop model application. Climatological and seasonal simulations with the FSU climate model coupled to the CLM2 (hereafter FSUCLM) are compared to those of the control (the FSU model with the original simple land surface treatment). The current version of the FSU model is known to have a cold bias in the temperature field and a wet bias in precipitation. The implementation of FSUCLM has reduced or eliminated this bias due to reduced latent heat flux and increased sensible heat flux. The role of the land model in seasonal simulations is shown to be more important during summertime than wintertime. An additional experiment that assimilates atmospheric forcings produces improved land-model initial conditions, which in turn reduces the biases further. The impact of various deep convective parameterizations is examined as well to further assess model performance. The land scheme plays a more important role than the convective scheme in simulations of surface air temperature. However, each convective scheme shows its own advantage over different geophysical locations in precipitation simulations.


2014 ◽  
Vol 146 ◽  
pp. 188-200 ◽  
Author(s):  
Nina Hoareau ◽  
Marta Umbert ◽  
Justino Martínez ◽  
Antonio Turiel ◽  
Joaquim Ballabrera-Poy

2021 ◽  
Author(s):  
Leilane Passos ◽  
Helene Langehaug ◽  
Marius Årthun ◽  
Tor Eldevik ◽  
Ingo Bethke ◽  
...  

Abstract The skilful prediction of climatic conditions on a forecast horizon of months to decades into the future remains a main scientific challenge of large societal benefit. Here we assess the hindcast skill of the Norwegian Climate Prediction Model (NorCPM) – for sea surface temperature (SST) and sea surface salinity (SSS) in the Arctic-Atlantic region – focusing on the impact of different initialization methods. We find the skill to be distinctly larger for the Subpolar North Atlantic than for the Norwegian Sea, and generally for all lead years analyzed. For the Subpolar North Atlantic, there is furthermore consistent benefit in increasing the amount of data assimilated, and also in updating the sea ice based on SST with strongly coupled data assimilation. The predictive skill is furthermore significant for at least two model versions up to 8-10 lead years with the exception for SSS at the longer lead years. For the Norwegian Sea, significant predictive skill is more rare; there is relatively higher skill with respect to SSS than for SST. A systematic benefit from more complex data assimilation approach can not be identified for this region. Somewhat surprisingly, skill deteriorates quite consistently for both the Subpolar North Atlantic and the Norwegian Sea when going from CMIP5 to corresponding CMIP6 versions. We find this to relate to change in the regional performance of the underlying physical model that dominates the benefit from initialization.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jeonghyeon Choi ◽  
Jeonghoon Lee ◽  
Sangdan Kim

In this study, the effects of surface air temperature (SAT) and sea surface temperature (SST) changes on typhoon rainfall maximization are analysed. Based on the numerically reproduced Typhoon Maemi, this study tried to maximize the typhoon-induced rainfall by increasing the amount of saturated water vapour in the atmosphere and the amount of water vapour entering the typhoon. Using the Weather Research and Forecasting (WRF) model, which is one of the regional climate models (RCMs), the rainfall simulated by WRF while increasing the SAT and SST to various sizes at initial conditions and boundary conditions of the model was analysed. As a result of the simulated typhoon rainfall, the spatial distribution of total rainfall depth on the land due to the increase combination of SAT and SST showed a wide variety without showing a certain pattern. This is attributed to the geographical location of the Korean peninsula, which is a peninsula between the continent and the ocean. In other words, under certain conditions, typhoons may drop most of the rainfall on the southern sea of the peninsula before landing on the peninsula. For instance, the 6-hour duration maximum precipitation (MP) in Busan Metropolitan City was 472.1 mm when the SST increased by 2.0°C. However, when the SST increased by 4.0°C, the MP was found to be 395.3 mm, despite the further increase in SST. This indicates that the MP at a particular area and the increase in temperature do not have a linear relationship. Therefore, in order to maximize typhoon rainfall, it is necessary to repeat the numerical experiment on various conditions and search for the combination of SAT and SST increase which is most suitable for the target typhoon.


Sign in / Sign up

Export Citation Format

Share Document