Slowing down the overturning – Insights from conceptual modelling on a stably stratified Mediterranean Sea during the Messinian Salinity Crisis

Author(s):  
Ronja Ebner ◽  
Paul Meijer

<p>Although the Mediterranean is known for its equable climate, this does not apply on geological timescales. At the end of the Miocene, salinity of the Mediterranean Sea exceeded gypsum and halite saturation, leading to the youngest known salt giant to form in a relatively short time span. This event is called the Messinian Salinity Crisis. Insight into the exact circumstances leading to this extreme situation would increase our understanding of today’s system and how it would react to climatic changes. Some of the theories rely on a drastic change in circulation, leading to a stably stratified water column at high salinities. It is yet to be determined how realistic these ideas are.</p><p>Conceptual box models can help to find answers to this. In a previous study it was already shown that a decrease in the rate of deep water formation in the margins can lead to a stratified water column. Here we used a predefined value for the overturning. In contrast, in the present study, the circulation, including the exchange through the strait of Gibraltar, is dynamically driven by density differences. By modelling stratification for various assumptions regarding the efficiency of the strait of Gibraltar, evaporation and the connectivity of the margins, this set-up ables us to get in-depth insights regarding the system in general, and the influence of climate and bathymetry on the circulation, specifically.</p><p>This model brings us one step closer to an understanding of the circumstances of this extreme state of the Mediterranean Sea</p>

2020 ◽  
Author(s):  
Zohar Gvirtzman ◽  
Vinicio Manzi ◽  
Ran Calvo ◽  
Ittai Gavrieli ◽  
Rocco Gennari ◽  
...  

<p>The Messinian salinity crisis (MSC) is an extreme event in Earth history during which a salt giant (>1×10<sup>6</sup> km<sup>3</sup>) accumulated on the Mediterranean seafloor within ~640 kyrs. The Messinian salt giant was formed about 6 million years ago when the restriction of water exchanges between the Atlantic Ocean and the Mediterranean Sea turned the Mediterranean into an enormous saline basin. After more than 40 years of research, the timing and the depositional environments of shallow (<200 m) and intermediate (200-1000 m) water-depth Messinian basins are known quite well from onshore outcrops. But what happened in the deepest portions of the Mediterranean Sea is still unclear, because the information about offshore successions is mainly based on geophysical data with no rock samples that can be dated.</p> <p>The Levant Basin is the only deep Mediterranean basin where the entire Messinian section has been penetrated by wells tied to high resolution 3D seismic surveys. Here we present two studies challenging the desiccation paradigm dominating the MSC scientific literature for more than 40 years.</p> <p>The first study focuses on the nearly flat top erosion surface (TES) that truncates a basinward-tilted Messinian evaporitic succession. This truncation is commonly interpreted to be the result of subaerial erosion at the end of the MSC. However, based on high resolution seismic surveys and wireline logs, we show that (1) the TES is actually an intra-Messinian truncation surface (IMTS) located ~100 m below the Messinian-Zanclean boundary; (2) the topmost, post-truncation, Messinian unit is very different from the underlying salt deposits and consists mostly of shale, sand, and anhydrite showing typical <sup>87</sup>Sr/<sup>86</sup>Sr values and fauna assemblages from stage 3; and (3) the flat IMTS is a dissolution surface related to significant dilution and stratification of the water column during the transition from stage 2 to stage 3. We suggest that dissolution occurred upslope where salt rocks at the seabed were exposed to the upper diluted brine, while downslope the salt rocks were preserved because submerged in the deeper halite-saturated layer. The model, which requires a stratified water column, is inconsistent with a complete desiccation of the eastern Mediterranean Sea.</p> <p>The second study focuses on the onset of the Messinian salinity crisis in the deep Eastern Mediterranean basin. Biostratigraphy and astronomical tuning of the Messinian pre-salt succession in the Levant Basin allows for the first time the reconstruction of a detailed chronology of the MSC events in deep setting and their correlation with marginal records that supports the CIESM (2008) 3-stage model. Our main conclusions are (1) MSC events were synchronous across marginal and deep basins, (2) MSC onset in deep basins occurred at 5.97 Ma, (3) only foraminifera-barren, evaporite-free shales accumulated in deep settings between 5.97 and 5.60 Ma, (4) deep evaporites (sulfate and halite) deposition started later, at 5.60 Ma. The wide synchrony of events implies inter-sub-basin connection during the whole salinity crisis and is not compatible with large sea-level fall that would have separated the eastern and western basins producing diachronic processes.</p>


2021 ◽  
Vol 19 ◽  
pp. 1-11
Author(s):  
Mark Baum

The Messinian Salinity Crisis (5.97-5.33Ma) may be one of the most significant periods of sea-level change in recent geologic history. During this period, evaporite deposition throughout the Mediterranean basin records a series of dramatic environmental changes as flow through the Strait of Gibraltar was restricted. In the first stage of evaporite deposition, cycles of gypsum appear in shallow basins on the margins of the Mediterranean. The complex environmental history giving rise to these cycles has been investigated for decades but remains controversial. Notably, whether the evaporites are connected to significant changes in Mediterranean sea level is an open question. In one proposed model, competition between tectonic uplift and erosion at the Strait of Gibraltar gives rise to selfsustaining sea-level oscillations—limit cycles—which trigger evaporite deposition. Here I show that limit cycles are not a robust result of the proposed model and discuss how any oscillations produced by this model depend on an unrealistic formulation of a key model equation. First, I simplify the model equations and test whether limit cycles are produced in 64 million unique combinations of model parameters, finding oscillations in only 0.2% of all simulations. Next, I examine the formulation of a critical model equation representing stream channel slope over the Strait of Gibraltar, concluding that a more realistic formulation would render sea-level limit cycles improbable, if not impossible, in the proposed model.


2007 ◽  
Vol 37 (2) ◽  
pp. 338-358 ◽  
Author(s):  
Ichiro Fukumori ◽  
Dimitris Menemenlis ◽  
Tong Lee

Abstract A new basin-wide oscillation of the Mediterranean Sea is identified and analyzed using sea level observations from the Ocean Topography Experiment (TOPEX)/Poseidon satellite altimeter and a numerical ocean circulation model. More than 50% of the large-scale, nontidal, and non-pressure-driven variance of sea level can be attributed to this oscillation, which is nearly uniform in phase and amplitude across the entire basin. The oscillation has periods ranging from 10 days to several years and has a magnitude as large as 10 cm. The model suggests that the fluctuations are driven by winds at the Strait of Gibraltar and its neighboring region, including the Alboran Sea and a part of the Atlantic Ocean immediately to the west of the strait. Winds in this region force a net mass flux through the Strait of Gibraltar to which the Mediterranean Sea adjusts almost uniformly across its entire basin with depth-independent pressure perturbations. The wind-driven response can be explained in part by wind setup; a near-stationary balance is established between the along-strait wind in this forcing region and the sea level difference between the Mediterranean Sea and the Atlantic Ocean. The amplitude of this basin-wide wind-driven sea level fluctuation is inversely proportional to the setup region’s depth but is insensitive to its width including that of Gibraltar Strait. The wind-driven fluctuation is coherent with atmospheric pressure over the basin and contributes to the apparent deviation of the Mediterranean Sea from an inverse barometer response.


Ocean Science ◽  
2013 ◽  
Vol 9 (2) ◽  
pp. 301-324 ◽  
Author(s):  
K. Schroeder ◽  
C. Millot ◽  
L. Bengara ◽  
S. Ben Ismail ◽  
M. Bensi ◽  
...  

Abstract. The long-term monitoring of basic hydrological parameters (temperature and salinity), collected as time series with adequate temporal resolution (i.e. with a sampling interval allowing the resolution of all important timescales) in key places of the Mediterranean Sea (straits and channels, zones of dense water formation, deep parts of the basins), constitute a priority in the context of global changes. This led CIESM (The Mediterranean Science Commission) to support, since 2002, the HYDROCHANGES programme (http//www.ciesm.org/marine/programs/hydrochanges.htm), a network of autonomous conductivity, temperature, and depth (CTD) sensors, deployed on mainly short and easily manageable subsurface moorings, within the core of a certain water mass. The HYDROCHANGES strategy is twofold and develops on different scales. To get information about long-term changes of hydrological characteristics, long time series are needed. But before these series are long enough they allow the detection of links between them at shorter timescales that may provide extremely valuable information about the functioning of the Mediterranean Sea. The aim of this paper is to present the history of the programme and the current set-up of the network (monitored sites, involved groups) as well as to provide for the first time an overview of all the time series collected under the HYDROCHANGES umbrella, discussing the results obtained thanks to the programme.


2021 ◽  
Vol 8 ◽  
Author(s):  
Neele Schmidt ◽  
Yusuf C. El-Khaled ◽  
Felix I. Roßbach ◽  
Christian Wild

In the Mediterranean Sea, the fleshy red alga Phyllophora crispa forms dense mats of up to 15 cm thickness, mainly located on rocky substrates in water depths below 20 m. Because of the observed density of these mats and some first observations, we hypothesize that P. crispa is a yet undescribed ecosystem engineer that provides a multitude of ecological niches for associated organisms along small-scale environmental gradients. Therefore, we conducted an in-situ pilot study in the Western Mediterranean Sea to assess potential influence of the algae mats on the key environmental factors water movement, temperature and light intensity. We comparatively and simultaneously measured in P. crispa mats, in neighboring Posidonia oceanica seagrass meadows, on neighboring bare rocky substrates without algae mats, and in the directly overlying water column. We used several underwater logging sensors and gypsum clod cards. Findings revealed that P. crispa significantly reduced water movement by 41% compared to the overlying water column, whereas water movement was not affected by P. oceanica meadows and bare rocky substrates. Surprisingly, P. crispa increased the water temperature by 0.3°C relative to the water column, while the water temperature in P. oceanica and on bare rocky substrates was reduced by 0.5°C. Light intensity inside the red algae mats was reduced significantly by 69% compared to the water column. This was similar to measured light reduction of 77% by P. oceanica. These findings highlight the strong influence of the dense red algae mats on some key environmental factors. Their influence is obviously similar or even higher than for the well-known seagrass ecosystem engineer. This may be a factor that facilitates associated biodiversity similarly as described for P. oceanica.


Author(s):  
Andrew S. Cohen

Before discussing paleolimnological archives, we need to consider those aspects of limnology that regulate how information is produced, transmitted, and filtered through the water column. Although many limnological processes leave behind sedimentary clues of their existence or intensity and are thus amenable to paleolimnological analysis, others leave little or no detectable trace. Our consideration of limnology here emphasizes the former. Throughout the next three chapters we will examine the properties of lakes, the implications of these properties for paleolimnology, and the types of physical, chemical, and biological information that can be transcribed into sedimentary archives. Physical processes in lakes are of interest because they act as intermediary hydroclimate filters between external forcing events of interest, like climate, and the paleolimnological record. For example, understanding the hydrology of a lake is important because water inputs and outputs, which are often controlled by climate, determine lake levels, which in turn are recorded by ancient shoreline elevations, or indirectly by salinity indicators. Light and heat penetration regulate the distribution of organisms and the mixing of the water column, recorded by the distribution of various fossils, sediment types, and geochemical characteristics of sediments. Also, current and wave activity affect the transport of sedimentary particles and therefore the distribution of sediment types around a lake basin. Understanding these physical processes therefore provides us with a means of linking sedimentological, geochemical, and paleobiological records of lake deposits to the external environment. Water enters and exits lakes through a variety of paths that comprise part of the earth’s hydrological cycle. The lake components of this cycle include a series of inputs and outputs of water, which in combination with the morphometry of the lake basin, collectively determine the lake’s level. Inputs include precipitation, surface runoff from rivers, and groundwater discharge into the lake. Outflows include surface outflow, evaporation, evapotranspiration losses from emergent aquatic plants, groundwater recharge, and hydration reactions with underlying sediments. If water inputs and outputs for a lake are equal over a short time span, the lake surface elevation will remain constant. This is approximately the case in most lakes that are surficially open basins.


Author(s):  
David Abulafia

Carved out millions of years before mankind reached its coasts, the Mediterranean Sea became a ‘sea between the lands’ linking opposite shores once human beings traversed its surface in search of habitation, food or other vital resources. Early types of humans inhabited the lands bordering the Mediterranean 435,000 years before the present, to judge from evidence for a hunters’ camp set up near modern Rome; others built a simple hut out of branches at Terra Amata near Nice, and created a hearth in the middle of their dwelling – their diet included rhinoceros and elephant meat as well as deer, rabbits and wild pigs. When early man first ventured out across the sea’s waters is uncertain. In 2010, the American School of Classical Studies at Athens announced the discovery in Crete of quartz hand-axes dated to before 130,000 BC, indicating that early types of humans found some means to cross the sea, though these people may have been swept there unintentionally on storm debris. Discoveries in caves on Gibraltar prove that 24,000 years ago another species of human looked across the sea towards the mountain of Jebel Musa, clearly visible on the facing shore of Africa: the first Neanderthal bones ever discovered, in 1848, were those of a woman who lived in a cave on the side of the Rock of Gibraltar. Since the original finds were not immediately identified as the remains of a different human species, it was only when, eight years later, similar bones were unearthed in the Neander Valley in Germany that this species gained a name: Neanderthal Man should carry the name Gibraltar Woman. The Gibraltar Neanderthals made use of the sea that lapped the shores of their territory, for their diet included shellfish and crustaceans, even turtles and seals, though at this time a flat plain separated their rock caves from the sea. But there is no evidence for a Neanderthal population in Morocco, which was colonized by homo sapiens sapiens, our own branch of humanity. The Straits apparently kept the two populations apart.


2006 ◽  
Vol 177 (1) ◽  
pp. 27-36 ◽  
Author(s):  
Ludovic Mocochain ◽  
Georges Clauzon ◽  
Jean-Yves Bigot

Abstract The Messinian salinity crisis is typically recorded by evaporites in the abyssal plains of the Mediterranean Sea and by canyons incised into the Mediterranean margins and their hinterlands. However, the impacts of crisis on geomorphology and surface dynamics lasted, until canyons were filled by sediments in the Pliocene (fig. 2). In the mid-Rhône valley, the Ardeche Cretaceous carbonate platform is incised over 600 m by the Rhône Messinian canyon. The canyon thalweg is located – 236 m bsl (below sea level) in the borehole of Pierrelatte [Demarcq, 1960; fig. 1]. During the Pliocene, this canyon was flooded as a ria and infilled by a Gilbert type fan delta [Clauzon and Rubino, 1992; Clauzon et al., 1995]. The whole Messinian-Pliocene third order cycle [Haq et al., 1987] generated four benchmark levels. The first two are [Clauzon, 1996]: (i) The pre-evaporitic abandonment surface which is mapped around the belvedere of Saint-Restitut (fig. 1). This surface is synchronous [Clauzon, 1996] of the crisis onset (5.95 Ma) [Gautier et al., 1994; Krigjsman et al., 1999] and, consequently, is an isochronous benchmark. (ii) The Messinian erosional surface is also an isochronous benchmark due to the fast flooding [Blanc, 2002] of the Rhône canyon, becoming a ria at 5.32 Ma [Hilgen and Langereis, 1988]. These surfaces are the result of endoreic Mediterranean sea level fall more than a thousand meters below the Atlantic Ocean. A huge accommodation space (up to more than 1000 m) was created as sea-level rose up to 80 m above its present-day level (asl) during the Pliocene highstand of cycle TB 3.4 (from 5.32 to 3.8 Ma). During the Lower Pliocene this accommodation space was filled by a Gilbert fan delta. This history yields two other benchmark levels: (i) the marine/non marine Pliocene transition which is an heterochronous surface produced by the Gilbert delta progradation. This surface recorded the Pliocene highstand sea level; (ii) the Pliocene abandonment surface at the top of the Gilbert delta continental wedge. Close to the Rhône-Ardeche confluence, the present day elevations of the four reference levels are (evolution of base-level synthesized in fig. 4): (1) 312 m asl, (2) 236 m bsl, (3) 130 m asl, (4) 190 m asl. The Ardèche carbonate platform underwent karstification both surficial and at depth. The endokarst is characterized by numerous cavities organised in networks. Saint-Marcel Cave is one of those networks providing the most complete record (fig. 5). It opens out on the northern side of the Ardeche canyon at an altitude of 100 m. It is made up by three superposed levels extending over 45 km in length. The lower level (1) is flooded and functionnal. It extends beneath the Ardeche thalweg down to the depth of 10 m bsl reached by divers. The observations collected in the galleries lead us to the conclusion that the karst originated in the vadose area [Brunet, 2000]. The coeval base-level was necessarily below those galleries. The two other levels (middle (2) and upper (3)) are today abandoned and perched. The middle level is about 115 m asl and the upper one is about 185 m asl. They are horizontal and have morphologies specific to the phreatic and temporary phreatic zone of the karst (fig. 6). In literature, the terracing of the Saint-Marcel Cave had been systematically interpreted as the result of the lowering by steps of the Ardeche base-level [Guérin, 1973; Blanc, 1995; Gombert, 1988; Debard, 1997]. In this interpretation, each deepening phase of the base level induces the genesis of the gravitary shaft and the abandonment of the previous horizontal level. The next stillstand of base level leads to the elaboration of a new horizontal level (fig. 7). This explanation is valid for most of Quaternary karsts, that are related to glacioeustatic falls of sea-level. However our study on the Saint-Marcel Cave contests this interpretation because all the shafts show an upward digging dynamism and no hint of vadose sections. The same “per ascensum” hydrodynamism was prevailing during the development of the whole network (figs. 8 and 9). We interpret the development of the Ardeche endokarst as related to the eustatic Messinian-Pliocene cycle TB 3.4/3.5 recorded by the Rhône river. The diving investigations in the flooded part of the Saint-Marcel Cave and also in the vauclusian springs of Bourg-Saint-Andeol reached - 154 m bsl. Those depths are compatible only with the incision of the Messinian Rhône canyon at the same altitude (−236 m bsl). The Saint-Marcel lower level would have develop at that time. The ascending shaping of levels 2 and 3 is thus likely to have formed during the ensuing sea-level rise and highstand during the Pliocene, in mainly two steps: (i) the ria stage controlled by the Mediterranean sea level rise and stillstand; (ii) the rhodanian Gilbert delta progradation, that controlled the genesis of the upper level (fig. 10).


2019 ◽  
Vol 49 (7) ◽  
pp. 1699-1721 ◽  
Author(s):  
Nadia Pinardi ◽  
Paola Cessi ◽  
Federica Borile ◽  
Christopher L. P. Wolfe

AbstractThe time-mean zonal and meridional overturning circulations of the entire Mediterranean Sea are studied in both the Eulerian and residual frameworks. The overturning is characterized by cells in the vertical and either zonal or meridional planes with clockwise circulations in the upper water column and counterclockwise circulations in the deep and abyssal regions. The zonal overturning is composed of an upper clockwise cell in the top 600 m of the water column related to the classical Wüst cell and two additional deep clockwise cells, one corresponding to the outflow of the dense Aegean water during the Eastern Mediterranean Transient (EMT) and the other associated with dense water formation in the Rhodes Gyre. The variability of the zonal overturning before, during, and after the EMT is discussed. The meridional basinwide overturning is composed of clockwise, multicentered cells connected with the four northern deep ocean formation areas, located in the Eastern and Western Mediterranean basins. The connection between the Wüst cell and the meridional overturning is visualized through the horizontal velocities vertically integrated across two layers above 600 m. The component of the horizontal velocity associated with the overturning is isolated by computing the divergent components of the vertically integrated velocities forced by the inflow/outflow at the Strait of Gibraltar.


Sign in / Sign up

Export Citation Format

Share Document