seismic surveys
Recently Published Documents


TOTAL DOCUMENTS

734
(FIVE YEARS 151)

H-INDEX

30
(FIVE YEARS 5)

2022 ◽  
Vol 12 (2) ◽  
pp. 584
Author(s):  
Sherif M. Hanafy

Near-surface high-resolution seismic mapping is very important in many applications such as engineering and environmental. However, the conventional setup of the seismic technique requires planting geophones, connecting cables, and then collecting all equipment after completing the survey, which is time-consuming. In this study, we suggest using a land-streamer setup rather than the conventional setup for fast, accurate, and high-resolution near-surface seismic surveys. Only one field data set is recorded using both the conventional and the land-streamer setups. The recorded data is then compared in terms of time, frequency, wavenumber domains, and acquisition time. Following this, we compared the accuracy of the subsurface mapping of both setups using a synthetic example. The results show that the conventional setup can reach deeper depths but with lower accuracy, where the errors in imaging the local anomalies’ widths and thicknesses are 77% to 145% and 35% to 50%, respectively. The land-streamer setup provides accurate near-surface results but shallower penetration depth, here the errors in the anomalies’ widths and thicknesses are 5% to 12% and 10% to 20%, respectively.


Author(s):  
Saurabh Datta Gupta ◽  
Sugata Kumar Sinha ◽  
Raman Chahal

AbstractThe Rajasthan basin situates in the western part of India. The basin architecture comprises three significant sub-basins such as Barmer-Sanchor, Bikaner-Nagaur and Jaisalmer. Barmer-Sanchor and Bikaner-Nagaur sub-basins are intracratonic categories, whereas the Jaisalmer sub-basin comes under intracratonic nature. The current study was conducted in the Jaisalmer sub-basin. The study was conducted in two regions in the Jaisalmer sub-basin through a comparative quantitative interpretation study with the help of two vintages seismic surveys. Ghotaru and Bandha are two adjacent areas in the Jaisalmer sub-basin where Ghotaru has seen few hydrocarbon discoveries; however, no such discoveries are encountered in the Bandha area. The current study was concentrated on the Jaisalmer limestone formation in the Jurassic age. The sub-basin and its related study area have been structurally deformed due to various tectonic activities. Structural deformation was played a crucial role in changing the rock property of limestone facies. A post-stack seismic inversion was carried out to capture the rock property changes in the limestone reservoir based on P-impedance values. Development of high P-impedance was observed in the Ghotaru region compared to the Bandha region from this study. A frequency changes of the limestone lithofacies with structural components was also captured in this study. The high impedance limestone lithofacies is a probable hydrocarbon-bearing reservoir unit in the Jaisalmer Formation of the Ghotaru region.


2022 ◽  
Vol 41 (1) ◽  
pp. 8-8
Author(s):  
Keith Millis ◽  
Guillaume Richard ◽  
Chengbo Li

In the life cycle of a seismic product, the lion's share of the budget and personnel hours is spent on acquisition. In most modern seismic surveys, acquisition involves hundreds of specialized personnel working for months or years. Seismic acquisition also must overcome potential liabilities and health, safety, and environmental concerns that rival facility, pipeline, construction, and other operational risks. As only properly acquired data can contribute effectively to processing and interpretation strategies, a great deal of importance is placed on acquisition quality. Arguably, many of the advances the seismic industry has experienced find their origin arising from advances in acquisition techniques. Full-waveform inversion (FWI), for example, can reach its full potential only when seismic acquisition has provided both low frequencies and long offsets.


First Break ◽  
2022 ◽  
Vol 40 (1) ◽  
pp. 45-52
Author(s):  
Adrien Meffre ◽  
Vincent Prieux ◽  
Matthieu Retailleau ◽  
David Le Meur ◽  
Abel Afonso Monteiro ◽  
...  

2022 ◽  
Vol 41 (1) ◽  
pp. 27-33
Author(s):  
Amine Ourabah ◽  
Allan Chatenay

In the quest for denser, nimbler, and lower-cost seismic surveys, the industry is seeing a revolution in the miniaturization of seismic equipment, with autonomous nodes approaching the size of a geophone and sources becoming portable by crews on foot. This has created a paradigm shift in the way seismic is acquired in difficult terrains, making zero-environmental-footprint surveys a reality while reducing cost and health, safety, and environmental risk. The simplification of survey operation and the new entry price of seismic surveys unlocked by these technologies are already benefiting industries beyond oil and gas exploration. High trace density seismic has become accessible to industries playing a key role in the net-zero era, such as geothermal and carbon capture, utilization, and storage (CCUS), to which a good understanding of the subsurface geology is crucial to their success. We describe these benefits as observed during an ultra-high-density seismic survey acquired in June 2020 through a partnership between STRYDE, Explor, and Carbon Management Canada over the Containment and Monitoring Institute site. The smallest and lightest source and receiver equipment in the industry were used to achieve a trace density of 257 million traces/km2 over this test site dedicated to CCUS studies. We discuss the operational efficiency of the seismic acquisition, innovative techniques for data transfer and surveying, and preliminary results of the seismic data processing with a focus on the near-surface model and fast-track time migration.


2021 ◽  
Author(s):  
Maoshan Chen ◽  
Zhonghong Wan ◽  
Changhong Wang ◽  
Jingyan Liu ◽  
Zhaoqin Chen

Summary Due to the rapid increase in the amount of seismic volumes, the traditional seismic interpretation mode based on manual structure interpretation and single-horizon automatic tracking has encountered many challenges. The seismic interpretation of large or super-large 3-D seismic surveys is facing serious accuracy and efficiency bottlenecks. Aiming to the goal of improving the accuracy and efficiency of seismic interpretation, we propose a dynamic seismic waveform matching technology based on the sparse dynamic time warping algorithm under the guidance of the relative geological time volume theory, and realize multi-horizon simultaneous tracking based on the technology. Has been verified by a model and a real seismic volume, it can realize simultaneous horizon automatic tracking, full spatial tracking and high-density tracking, and can significantly improve the accuracy and efficiency of structure interpretation.


2021 ◽  
Author(s):  
Oleg Khakimov ◽  
Yaser Gholami ◽  
Bertrand Tertrais ◽  
Guillaume Cambois ◽  
Mohamed Mahgoub

Abstract Seismic surveys are generally designed to image deep reservoirs, which leaves the near-surface woefully under-sampled. This is particularly a challenge offshore Abu Dhabi, where a complex near-surface – with karstic collapses and meandering channels – contaminates the seismic image with strong footprints. To mitigate these effects, we use near-field hydrophone data, primarily designed to QC the airgun source, for near-surface imaging. Near-field hydrophones (NFH) are positioned about a meter above each airgun and are designed to record the source near-field pressure. They immediately capture dysfunctional or out-of-spec guns, which alerts the recording crew. Yet, in a shallow water environment, they unintentionally record seismic reflections from the near-surface, which we will use for seismic imaging. Streamer vessels usually use two source arrays, 50 meters apart, which shoot in a flip-flop mode. The active NFH refer to the recordings directly above the shooting guns, while the passive NFH refer to the recordings from the array that is not shooting. Because the passive NFH are less contaminated by the source near-field, they are typically the preferred choice for near-surface imaging. Waters are too shallow in offshore Abu Dhabi to use streamer vessels. Instead, seismic surveys involve ocean-bottom cables (OBC) or nodes (OBN) and smaller airgun arrays. The shooting vessels can be single-source or dual-source. While a single source vessel has only active NFH, a dual source vessel has both active and passive NFH. However, even if a dual-source vessel is used, the 50 m distance between the shooting source array and the passive NFH is too large to capture the water-bottom reflection for water-depths shallower than 25 m. For these reasons, we propose to combine both measurements, using active NFH for the very shallow section and passive NFH for the deeper section. We have applied this technique to a recent node survey acquired offshore Abu Dhabi. By combining the active and passive NFH, a very high-resolution shallow image was obtained, which allows the interpretation of geological layers just below the water bottom. Comparisons with high resolution 2D site survey images show good agreement. Given the NFH do not require any additional acquisition and are delivered as a byproduct of standard seismic surveys, we have demonstrated that proper use of NFH can provide high quality images for pre-site survey interpretation, which reduces the need for additional – and expensive – geotechnical surveys. This is the first published use of combined active and passive NFH in Abu Dhabi shallow waters for the purpose of imaging. The resolution of the shallow formation images allows detailed interpretation not achievable using conventional seismic data. In the long term, this technique may reduce the need for additional site survey acquisitions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michael Ladegaard ◽  
Jamie Macauley ◽  
Malene Simon ◽  
Kristin L. Laidre ◽  
Aleksandrina Mitseva ◽  
...  

AbstractA longer Arctic open water season is expected to increase underwater noise levels due to anthropogenic activities such as shipping, seismic surveys, sonar, and construction. Many Arctic marine mammal species depend on sound for communication, navigation, and foraging, therefore quantifying underwater noise levels is critical for documenting change and providing input to management and legislation. Here we present long-term underwater sound recordings from 26 deployments around Greenland from 2011 to 2020. Ambient noise was analysed in third octave and decade bands and further investigated using generic detectors searching for tonal and transient sounds. Ambient noise levels partly overlap with previous Arctic observations, however we report much lower noise levels than previously documented, specifically for Melville Bay and the Greenland Sea. Consistent seasonal noise patterns occur in Melville Bay, Baffin Bay and Greenland Sea, with noise levels peaking in late summer and autumn correlating with open water periods and seismic surveys. These three regions also had similar tonal detection patterns that peaked in May/June, likely due to bearded seal vocalisations. Biological activity was more readily identified using detectors rather than band levels. We encourage additional research to quantify proportional noise contributions from geophysical, biological, and anthropogenic sources in Arctic waters.


2021 ◽  
Author(s):  
◽  
Aaron Graeme Johnston

<p>This seismic interpretation project provides new insights into the interaction between the Pliocene-aged Giant Foresets Formation and the faults bounding the Northern Graben. A newly named fault-bounded depocentre within the North Taranaki Graben, the Arawa Sub-Basin, has subsided during the Pliocene, attracting volumes of sediment across the Parihaka Fault within large-scale channels. The study images kilometer-scale channels and explores the interplay between the progradation of the Giant Foresets Formation and normal faulting along the Cape Egmont Fault Zone. A focus is placed on imaging the provenance and depositional facies of sedimentary packages throughout the foresetting sequence of the Giant Foresets Formation.  Mapping of the Waipipian-Nukumaruan-aged foresetting sequence within the offshore northern Taranaki Basin has previously shown the primary sediment transport direction is primarily NNW. This is contradicted by sediment-transport features mapped within the study area showing the sediment transport direction fluctuates between NE and SE. The primary mechanism of sediment redirection is faulting along the Cape Egmont Fault Zone and subsidence within the North Taranaki Graben, an elongate SW-NE graben within the northern Taranaki Basin. Smaller (˜10s m-scale) channels concentrate into much larger (˜100s m- to km-scale) mega-channels that travel E/NE into the subsiding Arawa Sub-Basin. Volcanic intrusions of the Mohakatino Volcanic Formation have also influenced the evolution of the mega-channels in the study area, via uplift and doming of the seafloor which provided a barrier to the transport of sediment.  The Parihaka 3D and ES89 2D seismic surveys are interpreted using the IHS Kingdom software package to create a basic framework of horizons and faults over the Pliocene-Recent interval. Depth grid maps are produced from the grid of horizon picks. Isochore maps are produced which span key intervals between depth grids. A coherency cube of the Parihaka 3D is generated from the 3D seismic volume using OpendTect. Using the framework of faults and horizons within the coherency cube, imaging sediment transport and deposition features in the vicinity of normal faulting is made possible by flattening on a top foresets horizon and horizontally slicing the data at regular intervals. This recreates past conditions by removing the effects of fault-slip and differential compaction. These “time-slices” contain clear images of channels, canyons and fan-deposits allowing sediment provenance and transport direction to be mapped and interpreted. Finally, seismic section images from the Parihaka 3D and ES89 2D seismic surveys are generated along paths intersecting key geological features within the study area.</p>


Sign in / Sign up

Export Citation Format

Share Document