Mineralogy and geochemistry of the inclusion-bearing Cr-pyropes from the Chompolo lamprophyres, Aldan shield, Siberian сraton

Author(s):  
Evgeny Nikolenko ◽  
Igor Sharygin ◽  
Vladimir Malkovets ◽  
Dmitriy Rezvukhin ◽  
Valentin Afanasiev

<p>Inclusion assemblages within Cr-pyrope xenocrysts from the Aldanskaya and Ogonek lamprophyres (Chompolo field, Aldan shield of Siberian craton, Yakutia) are characterized by the wide list of minerals. Partially the inclusion assemblages with graphite within Cr-pyropes in Chompolo lamprophyres were previously described (Nikolenko et al., 2017).</p><p>Here we present the results of a trace-elements study of 54 pyrope grains with Cr-spinel inclusions. The majority of studied pyropes are lherzolitic with small amount of wherlitic and harzburgitic ones, according to the classification schemes (Sobolev et al 1973; Grutter et al., 2004). The concentration of Cr<sub>2</sub>O<sub>3</sub> ranges from 1.58 to 7.56 wt% at Mg # = 69.6-84.4 and Ca # = [100Ca / (Ca + Mg + Fe + Mn)] = 8.6-26.3. The TiO<sub>2</sub> content does not exceed 0.36 wt%. The MnO contents in the pyropes studied is in the range of 0.35–0.69 wt%, which indicates rather low temperature conditions (Grutter at al., 2004).</p><p>Studied mineral inclusions can be divided in two groups by their morphology and position within the host pyrope grain. Majority of the studied Cr-spinels within pyropes are represented by the single-mineral inclusions (CrSp-I), which have clear octahedral morphology but some of them can be described by more complex morphology that looks as irregular or rounded. Single Cr-spinel inclusions are commonly large and range in size from 100 to 500 µm. Another inclusions type represents joint associations of Cr-spinels (CrSp-II) with silicates, carbonates, sulphides, graphite, volatile-bearing minerals and series of Ti-oxides. Size of Cr-spinels II in this samples is usually 10-50 µm and rarely reaches 100 µm.</p><p>The distribution of the rare earth elements (REE) for pyropes containing CrSp-I inclusions in chondrite-normalized REE-diagram has a sinusoidal pattern and is characterized by the chondrite-normalized ratio Sm<sub>N</sub>/Er<sub>N </sub>> 1 at low Ti/Eu values, which is a sign of carbonatite metasomatism (Shchukina et al., 2017). Pyropes containing complex polyphase inclusions with CrSp-II carry signs of silicate (melt) metasomatism, expressed in elevated contents of Y (up to 20.5 ppm) and Zr (9.5–44.6 ppm) and an increased Ti impurity. Pyropes with CrSp-II inclusions have typical for lherzolites distribution of REE with  Sm<sub>N</sub>/Er<sub>N</sub> ratio in the range of 0.5-1.</p><p>Cr-spinel inclusions within pyropes were also studied in detail and revealed some differences in the chemical composition between two groups.</p><p>Temperatures estimated for the pyropes containing mineral inclusions using Ni-in-garnet thermometer ranges from 640-910 °C. Temperatures were also estimated for Cr-spinel inclusions by use the Zn-in-spinel thermometer (Ryan et al., 1996). The temperature distribution for CrSp-I and CrSp-II groups shows different values with maximum frequency at 650-700 and 750-800 °C respectively.</p><p>The geochemical features, the composition of inclusions and the results of thermometry of the two described pyrope populations with Cr-spinel inclusions indicate different metasomatic processes associated with their formation.</p><p>Complex studies of mineral inclusions in Cr-pyropes and major element analyses of Cr-pyropes and Cr-spinels were supported by the Russian Science Foundation, grant No 18-77-10062. Trace-elements studies of Cr-pyropes were supported by the Russian Science Foundation, grant No 18-17-00249.</p>

Author(s):  
R. A. Batchelor ◽  
J. A. Weir

ABSTRACTThe Moffat Shale Group is a condensed, variable and partly pelagic sequence of mudrocks of Llandeilo—Llandovery age. The sequence has a five-fold lithological subdivision based mainly on the occurrence of grey mudstones within a succession otherwise dominated by fully euxinic black graptolitic mudrocks. Associated with the black mudrocks, especially in the Llandovery, are metabentonite beds which achieve a climax, both in thickness and in number, within the top quarter of the mudrock sequence. A geochemical and mineralogical study has confirmed a volcanic origin for the metabentonites. Major element data highlight a carbonate-dominated environment above the gregarius—convolutus Zones boundary. Phosphorus levels reach a peak at the same boundary, as well as at the Caradoc—Ashgill boundary where phosphorite horizons are known from Wales and Norway. Immobile trace elements have highlighted regular changes in source magma composition. Prolonged periods of crystal fractionation in magmas of intermediate composition gave rise, on eruption, to large volumes of silicic ash which had a deleterious effect on graptolite species and led to local extinctions. Regular fluctuations in ash composition from silicic to intermediate are ascribed to alternating fractionation and magma mixing cycles.


2019 ◽  
Vol 64 (4) ◽  
pp. 356-371
Author(s):  
R. A. Terentiev

This paper documents the data on high-Mg porphyrite dykes (PDs) from the mafic to felsic (~2.09 Ma) plutons of Elan complex (EC). The low-thickness (first centimeters) synplutonic dykes are characterized by sharp straight contacts without visible chilling zones, in contrast to the larger (up to 119 m) dykes that have gradual transitions. The dykes are fresh, porphyritic (bronzite, Al-enstatite, labradorite) and has fine-grained mainly quartzo-feldspathic (+biotite, sulfides, accessories, ±hypersthene) matrix. Based on geochemistry data the PDs are intermediate rocks (SiO2 = 58.9–60.3 wt. %) and plot into calc-alkaline series with high magnesian of whole rock (Mg# ~0.7) and felsic (68.9–70.2 wt. %) matrix (Mg# ~0.5). The PDs show differentiated rare-earth element patterns with negligible Eu anomalies. The bronzite phenocrysts varying sizes are characterized by block zoning and contain irregular inclusions of olivine (Mg# ~0.85), clinopyroxene (Mg# ~0.88), phlogopite (Mg# up to 0.94), labradorite, chrome spinel, graphite and sulfides. The Al-enstatite phenocrysts are practically sterile with respect to trace elements and mineral inclusions. The geochemical features as well as diffusion zones, reaction rims, and resorbed faces of the phenocrysts such as orthopyroxene and plagioclase indicate processes of recrystallization and/or partial dissolution of nonequilibrium crystals in the melt and indicate intratelluric nature of the dyke phenocrysts that cores are inherited from the EC derivatives/cumulate. The mineral thermometry estimates are: (1) the parent magma starting temperatures of 1200–1400 °С and (2) the EC crystallization temperatures 1080–1155 °С, (3) the PD emplacement temperatures 910–1070 °С. The petrogenetic model supposes the generation of EC high-temperature magmas similar to boninites from an upper metasomatized mantle. The melt is contaminated with continental crust lithologies. It implies the half-way evolved magma chamber in the crust. The PD melt, as a result of ending of the half-way magma chamber evolution, was emplaced into the still unheated EC plutons.


1999 ◽  
Vol 09 (03n04) ◽  
pp. 335-343 ◽  
Author(s):  
Y. IKEDA ◽  
N. ARAI ◽  
W. SAKAMOTO ◽  
K. YOSHIDA

Trace elements in a cuttlebone, a buoyant calcified tissue developing simultaneously with the individual growth, of an adult giant cuttlefish originating from the water of Ishigaki Island were measured by PIXE to examine the ontogenetic change of the element concentration. Beside calcium (major element), iron, zinc, manganese, copper, bromine and relatively large amounts of strontium were detected in the cuttlebone. Strontium concentration varied with position along the cuttlebone: it was high near the spine (the portion that deposited at the paralarval stage), then showed some variations at the middle portion of the cuttlebone (the portion that deposited from young stage to sub-adult stage) and became the highest near the locus (the portion that deposited near the catch date, i.e., adult stage). This variation was compared to migration of this species between inshore and offshore waters.


2016 ◽  
Vol 154 (1) ◽  
pp. 68-86 ◽  
Author(s):  
PRANJIT HAZARIKA ◽  
DEWASHISH UPADHYAY ◽  
KAMAL LOCHAN PRUSETH

AbstractMica pegmatites from the Bihar Mica Belt contain three distinct generations of tourmaline. The major-element composition, substitution vectors and trajectories within each group are different, which indicates that the three types of tourmalines are not a part of one evolutionary series. Rather, the differences in their chemistries as well their mutual microtextural relations, can be best explained by growth of tourmaline from pegmatitic melts followed by episodic re-equilibration during discrete geological events. The euhedral, coarse-grained brown type I tourmaline cores have relatively high Ca, Mg (XMgc. 0.37) and Al with correlated variation in Sr, Sc, Ti, Zr, Y, Cr, Pb and Rare Earth elements (REEs). They are inferred to have crystallized from pegmatitic melts. Monazites included within these tourmalines give chemical ages of 1290−1242 Ma interpreted to date the crystallization of the pegmatitic tourmaline. The bluish type II and greyish type III tourmalines with low Ca and Mg contents (XMg = 0.16−0.27) and high Zn, Sn, Nb, Ta and Na, formed by pseudomorphic partial replacement of the pegmatitic tourmaline via fluid-mediated coupled dissolution–reprecipitation, are ascribed to a hydrothermal origin. The ages obtained from monazites included in these tourmalines indicate two alteration events at c. 1100 Ma and c. 950 Ma. The correlated variation of Ca, Mg and Fe and the trace elements Sr, Sn, Sc, Zn and REE within the tourmalines indicates that the trace-element concentrations of tourmaline are controlled not only by the fluid chemistry but also by coupled substitutions with major-element ions.


2021 ◽  
Author(s):  
Xinran Xu ◽  
Yanjie Tang ◽  
et al.

Table S1: Petrological information and equilibrium temperature estimation for the studied samples; Table S2: Major element compositions (wt%) of minerals; Table S3: Trace element concentrations (ppm) of Cpx in xenoliths determined by LA-ICP-MS; Table S4: In situ Sr isotopic compositions of Cpx in the xenoliths.


1988 ◽  
Vol 52 (368) ◽  
pp. 587-601 ◽  
Author(s):  
Abdelkader Mokhtari ◽  
Danielle Velde

AbstractA study of xenocrystic material included in 57 Ma igneous rocks that outcrop in the Taourirt area of north-east Morocco has been made. The mineralogy of the host rocks is essentially clinopyroxene, rare olivine, titanomagnetite and either kaersutite or biotite. Feldspars (plagioclase and alkali feldspar) and nepheline are usually altered. Accessories may include haüyne, perovskite and ferriannite-rich annite. The complex xenocrystic assemblage includes various types of clinopyroxene, amphiboles, micas of differing compositions and various types of spinel. These inclusions did not dissolve in the melt and, as a consequence, the residual (alkali-rich) mineralogical assemblage is not modified. Their abundance is such that they may not significantly affect the major element compositions, but they may strongly influence the levels of certain trace elements such as Cr and Ni.


The early major products of Tertiary volcanicity in both Skye and Mull are transitional basic lavas, similar in their major-element chemistry to world-wide alkali basalt series. In contrast, their contents of incompatible trace elements bear more resemblance to those of olivine tholeiites. The Mull basalts have similar ranges of silica saturation, Mg/(Mg+Fe), Y and Yb, but lower overall abundance ranges of strongly incompatible elements than the Skye basalts. The variation of incompatible elements in the Mull and Skye lavas is consistent with a model of a mantle source from which a small amount of melt (no more than 1 % ?) had been extracted, with the pre-Tertiary upper-mantle fusion beneath Mull slightly greater than beneath Skye. Chemical and tectonic considerations suggest that this mantle was neither residual from the formation of the Archaean Lewisian complex, nor emplaced as a result of tension associated with the Gainozoic rifting of the North Atlantic. Data on major and trace elements for a mafic alkalic dyke of the Permian swarms that pass through western Scotland show that these have the requisite geochemical characteristics to have caused this depletion. Such dykes are more abundant in the region of Mull than Skye.


1996 ◽  
Vol 76 (3) ◽  
pp. 385-392
Author(s):  
J. J. Miller ◽  
B. J. Read ◽  
D. J. Wentz ◽  
D. J. Heaney

Plant samples were collected from 102 saline sites in Alberta from 1990 to 1993 to determine major element and trace element concentrations in relation to mineral requirements for beef cattle. Zinc concentrations were most frequently (94%) below the minimum requirement for beef cattle, followed by Cu (92%), Se (87%), Na (49%), Mn (29%), K (21%), Mg (3%), Fe (1%) and S (1%). The element most frequently exceeding the maximum tolerable level for beef cattle was S (20%), followed by Mg (17%), Al (5%), Fe (5%) and Mo (1%). Beef cattle consuming plants from saline areas of Alberta are more likely to experience potential deficiencies than toxicities of chemical elements required for adequate nutrition. Key words: Major elements, trace elements, plants, saline areas, mineral requirements, beef cattle


Sign in / Sign up

Export Citation Format

Share Document