High-resolution numerical modelling of the altimetry-derived gravity disturbances and disturbing gradients

Author(s):  
Róbert Čunderlík ◽  
Marek Macák ◽  
Michal Kollár ◽  
Karol Mikula

<p>Recent high-resolution mean sea surface models obtained from satellite altimetry in a combination with the GRACE/GOCE-based global geopotential models provide valuable information for detailed modelling of the altimetry-derived gravity data. Our approach is based on a numerical solution of the altimetry-gravimetry boundary-value problem using the finite volume method (FVM). FVM discretizes the 3D computational domain between an ellipsoidal approximation of the Earth's surface and an upper boundary chosen at a mean altitude of the GOCE satellite orbits. A parallel implementation of the finite volume numerical scheme and large-scale parallel computations on clusters with distributed memory allow to get a high-resolution numerical solution in the whole 3D computational domain. Our numerical experiment presents the altimetry-derived gravity disturbances and disturbing gradients determined with the high-resolution 1 x 1 arc min at two altitude levels; on the reference ellipsoid and at the altitude of 10 km above the ellipsoid. As input data, the Dirichlet boundary conditions over oceans/seas are considered in the form of the disturbing potential. It is obtained from the geopotential evaluated on the DTU18 mean sea surface model from the GO_CONS_GCF_2_TIM_R5 geopotential model and then filtered using the nonlinear diffusion filtering. On the upper boundary, the FVM solution is fixed to the disturbing potential generated from the GO_CONS_GCF_2_DIR_R5 model while exploiting information from the GRACE and GOCE satellite missions.</p>

2020 ◽  
Vol 50 (3) ◽  
pp. 287-302
Author(s):  
Róbert ČUNDERLÍK ◽  
Matej MEDĽA ◽  
Karol MIKULA

The paper presents local quasigeoid modelling in Slovakia using the finite volume method (FVM). FVM is used to solve numerically the fixed gravimetric boundary value problem (FGBVP) on a 3D unstructured mesh created above the real Earth's surface. Terrestrial gravimetric measurements as input data represent the oblique derivative boundary conditions on the Earth's topography. To handle such oblique derivative problem, its tangential components are considered as surface advection terms regularized by a surface diffusion. The FVM numerical solution is fixed to the GOCE-based satellite-only geopotential model on the upper boundary at the altitude of 230 km. The horizontal resolution of the 3D computational domain is 0.002 × 0.002 deg and its discretization in the radial direction is changing with altitude. The created unstructured 3D mesh of finite volumes consists of 454,577,577 unknowns. The FVM numerical solution of FGBVP on such a detailed mesh leads to large-scale parallel computations requiring 245 GB of internal memory. It results in the disturbing potential obtained in the whole 3D computational domain. Its values on the discretized Earth's surface are transformed into the local quasigeoid model that is tested at 404 GNSS/levelling benchmarks. The standard deviation of residuals is 2.8 cm and decreases to 2.6 cm after removing 9 identified outliers. It indicates high accuracy of the obtained FVM-based local quasigeoid model in Slovakia.


1990 ◽  
Vol 14 (1) ◽  
pp. 57-76 ◽  
Author(s):  
Frédérique Blanc ◽  
Sabine Houry ◽  
Pierre Mazzega ◽  
Jean François Minster

2014 ◽  
Vol 20 (2) ◽  
pp. 300-316 ◽  
Author(s):  
Henry Montecino Castro ◽  
Aharon Cuevas Cordero ◽  
Sílvio Rogério Correia de Freitas

Most aspects related to the horizontal component of the Geocentric Reference System for the Americas (SIRGAS) have been solved. However, in the case of the vertical component there are still aspects of definition, national realizations and continental unification still not accomplished. Chile is no exception; due to its particular geographic characteristics, a number of tide gauges (TG) had to be installed in the coast from which the leveling lines that compose the Chilean Vertical Network (CHVN) were established. This study explored the offsets of the CHVN by two different approaches; one geodetic and one oceanographic. In the first approach, the offsets were obtained in relation to the following Global Geopotential Models (GGM): the satellite-only model (unbiased) GO_CONS_gcf_2_tim_r3 derived from GOCE satellite mission; EGM2008 (combined-biased); and GOEGM08, combining information from the GO_CONS_gcf_2_tim_r3 in long wavelengths (n max~200) with the mean/short wavelengths of EGM2008 (n>200). In the oceanographic method, we used the CNES CLS 2011 Global Mean Sea surface and EIGEN_GRACE_5C GGM to obtain the values of MDT at the different TG. We also evaluated the CHVN in relation to different GGMs. The results showed consistency between the values obtained by the two methods at the TG of Valparaíso and Puerto Chacabuco. In terms of the evaluation of the GGM, GOEGM08 produced the best results.


1996 ◽  
Vol 125 (3) ◽  
pp. 696-704 ◽  
Author(s):  
A. Cazenave ◽  
P. Schaeffer ◽  
M. Berge ◽  
C. Brossier ◽  
K. Dominh ◽  
...  

2021 ◽  
Vol 13 (4) ◽  
pp. 646
Author(s):  
Ole Baltazar Andersen ◽  
Shengjun Zhang ◽  
David T. Sandwell ◽  
Gérald Dibarboure ◽  
Walter H. F. Smith ◽  
...  

The resolutions of current global altimetric gravity models and mean sea surface models are around 12 km wavelength resolving 6 km features, and for many years it has been difficult to improve the resolution further in a systematic way. For both Jason 1 and 2, a Geodetic Mission (GM) has been carried out as a part of the Extension-of-Life phase. The GM for Jason-1 lasted 406 days. The GM for Jason-2 was planned to provide ground-tracks with a systematic spacing of 4 km after 2 years and potentially 2 km after 4 years. Unfortunately, the satellite ceased operation in October 2019 after 2 years of Geodetic Mission but still provided a fantastic dataset for high resolution gravity recovery. We highlight the improvement to the gravity field which has been derived from the 2 years GM. When an Extension-of-Life phase is conducted, the satellite instruments will be old. Particularly Jason-2 suffered from several safe-holds and instrument outages during the GM. This leads to systematic gaps in the data-coverage and degrades the quality of the derived gravity field. For the first time, the Jason-2 GM was “rewound” to mitigate the effect of the outages, and we evaluate the effect of “mission rewind” on gravity. With the recent successful launch of Sentinel-6 Michael Freilich (S6-MF, formerly Jason CS), we investigate the possibility creating an altimetric dataset with 2 km track spacing as this would lead to fundamental increase in the spatial resolution of global altimetric gravity fields. We investigate the effect of bisecting the ground-tracks of existing GM to create a mesh with twice the resolution rather than starting all over with a new GM. The idea explores the unique opportunity to inject Jason-3 GM into the same orbital plane as used for Jason-2 GM but bisecting the existing Jason-2 tracks. This way, the already 2-years Jason-2 GM could be used to create a 2 km grid after only 2 years of Jason-3 GM, rather than starting all over with a new GM for Jason-3.


Sign in / Sign up

Export Citation Format

Share Document