Verification of post-processed seasonal predictions

Author(s):  
André Düsterhus

<p>Traditionally, verification of (ensemble) model predictions is done by comparing them to deterministic observations, e.g. with scores like the Continuous Ranked Probability Score (CRPS). While these approaches allow uncertain predictions basing on ensemble forecasts, it is open how to verify them against observations with non-parametric uncertainties.</p><p>This contribution focuses on statistically post-processed seasonal predictions of the Winter North Atlantic Oscillation (WNAO). The post-processing procedure creates in a first step for a dynamical ensemble prediction and for a statistical prediction basing on predictors two separate probability density functions (pdf). Afterwards these two distributions are combined to create a new statistical-dynamical prediction, which has been proven to be advantageous compared to the purely dynamical prediction. It will be demonstrated how this combination and with it the improvement of the prediction can be achieved before the focus will be set on the evaluation of those predictions at the hand of uncertain observations. Two new scores basing on the Earth Mover's Distance (EMD) and the Integrated Quadratic Distance (IQD) will be introduced and compared before it is shown how they can be used to effectively evaluate probabilistic predictions with uncertain observations. </p><p>Furthermore, a common approach (e.g. for correlation measures) is to compare predictions with observations over a longer time period. In this contribution a paradigm shift away from this approach towards comparing predictions for each single time step (like years) will be presented. This view give new insights into the performance of the predictions and allows to come to new understandings of the reasons for advantages or disadvantages of specific predictions. </p>

2013 ◽  
Vol 26 (19) ◽  
pp. 7525-7540 ◽  
Author(s):  
Øyvind Breivik ◽  
Ole Johan Aarnes ◽  
Jean-Raymond Bidlot ◽  
Ana Carrasco ◽  
Øyvind Saetra

Abstract A method for estimating return values from ensembles of forecasts at advanced lead times is presented. Return values of significant wave height in the northeast Atlantic, the Norwegian Sea, and the North Sea are computed from archived +240-h forecasts of the ECMWF Ensemble Prediction System (EPS) from 1999 to 2009. Three assumptions are made: First, each forecast is representative of a 6-h interval and collectively the dataset is then comparable to a time period of 226 years. Second, the model climate matches the observed distribution, which is confirmed by comparing with buoy data. Third, the ensemble members are sufficiently uncorrelated to be considered independent realizations of the model climate. Anomaly correlations of 0.20 are found, but peak events (>P97) are entirely uncorrelated. By comparing return values from individual members with return values of subsamples of the dataset it is also found that the estimates follow the same distribution and appear unaffected by correlations in the ensemble. The annual mean and variance over the 11-yr archived period exhibit no significant departures from stationarity compared with a recent reforecast; that is, there is no spurious trend because of model upgrades. The EPS yields significantly higher return values than the 40-yr ECMWF Re-Analysis (ERA-40) and ECMWF Interim Re-Analysis (ERA-Interim) and is in good agreement with the high-resolution 10-km Norwegian Reanalyses (NORA10) hindcast, except in the lee of unresolved islands where EPS overestimates and in enclosed seas where it has low bias. Confidence intervals are half the width of those found for ERA-Interim because of the magnitude of the dataset.


2009 ◽  
Vol 6 (4) ◽  
pp. 4891-4917
Author(s):  
J. A. Velázquez ◽  
T. Petit ◽  
A. Lavoie ◽  
M.-A. Boucher ◽  
R. Turcotte ◽  
...  

Abstract. Hydrological forecasting consists in the assessment of future streamflow. Current deterministic forecasts do not give any information concerning the uncertainty, which might be limiting in a decision-making process. Ensemble forecasts are expected to fill this gap. In July 2007, the Meteorological Service of Canada has improved its ensemble prediction system, which has been operational since 1998. It uses the GEM model to generate a 20-member ensemble on a 100 km grid, at mid-latitudes. This improved system is used for the first time for hydrological ensemble predictions. Five watersheds in Quebec (Canada) are studied: Chaudière, Châteauguay, Du Nord, Kénogami and Du Lièvre. An interesting 17-day rainfall event has been selected in October 2007. Forecasts are produced in a 3 h time step for a 3-day forecast horizon. The deterministic forecast is also available and it is compared with the ensemble ones. In order to correct the bias of the ensemble, an updating procedure has been applied to the output data. Results showed that ensemble forecasts are more skilful than the deterministic ones, as measured by the Continuous Ranked Probability Score (CRPS), especially for 72 h forecasts. However, the hydrological ensemble forecasts are under dispersed: a situation that improves with the increasing length of the prediction horizons. We conjecture that this is due in part to the fact that uncertainty in the initial conditions of the hydrological model is not taken into account.


2017 ◽  
Vol 32 (6) ◽  
pp. 2083-2101 ◽  
Author(s):  
Nicholas M. Leonardo ◽  
Brian A. Colle

Abstract North Atlantic tropical cyclone (TC) forecasts from four ensemble prediction systems (EPSs) are verified using the National Hurricane Center’s (NHC) best tracks for the 2008–15 seasons. The 1–5-day forecasts are evaluated for the 21-member National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS), the 23-member UKMO ensemble (UKMET), and the 51-member European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble, as well as a combination of these ensembles [Multimodel Global (MMG)]. Several deterministic models are also evaluated, such as the Global Forecast System (GFSdet), Hurricane Weather Research and Forecasting Model (HWRF), the deterministic ECMWF model (ECdet), and the Geophysical Fluid Dynamical Laboratory model (GFDL).The ECdet track errors are the smallest on average at all lead times, but are not significantly different from the GEFS and ECMWF ensemble means. All models have a slow bias (90–240 km) in the along-track direction by 120 h, while there is little bias in the cross-track direction. Much of this slow bias is attributed to TCs undergoing extratropical transition (ET). All EPSs are underdispersed in the along-track direction, while the ECMWF is slightly overdispersed in the cross-track direction. The MMG and ECMWF track forecasts have more probabilistic skill than the ECdet and comparable skill to the NHC climatology-based cone forecast. TC intensity errors for the HWRF and GFDL are lower than the coarser models within the first 24 h, but are comparable to the ECdet at longer lead times. The ECMWF and MMG have comparable or better probabilistic intensity forecasts than the ECdet, while the GEFS’s weak bias limits its skill.


2005 ◽  
Vol 133 (7) ◽  
pp. 1825-1839 ◽  
Author(s):  
A. Arribas ◽  
K. B. Robertson ◽  
K. R. Mylne

Abstract Current operational ensemble prediction systems (EPSs) are designed specifically for medium-range forecasting, but there is also considerable interest in predictability in the short range, particularly for potential severe-weather developments. A possible option is to use a poor man’s ensemble prediction system (PEPS) comprising output from different numerical weather prediction (NWP) centers. By making use of a range of different models and independent analyses, a PEPS provides essentially a random sampling of both the initial condition and model evolution errors. In this paper the authors investigate the ability of a PEPS using up to 14 models from nine operational NWP centers. The ensemble forecasts are verified for a 101-day period and five variables: mean sea level pressure, 500-hPa geopotential height, temperature at 850 hPa, 2-m temperature, and 10-m wind speed. Results are compared with the operational ECMWF EPS, using the ECMWF analysis as the verifying “truth.” It is shown that, despite its smaller size, PEPS is an efficient way of producing ensemble forecasts and can provide competitive performance in the short range. The best relative performance is found to come from hybrid configurations combining output from a small subset of the ECMWF EPS with other different NWP models.


2020 ◽  
Author(s):  
Maria Pyrina ◽  
Sebastian Wagner ◽  
Eduardo Zorita

<p>An alternative to dynamical seasonal prediction of European climate is statistical modeling. Statistical modeling is an appealing and computationally effective approach for producing seasonal forecasts by exploiting the physical connections between the predictand variable and the predictors. We assess the seasonal predictability of summer European 2m temperature (T2m) using canonical correlation analysis. Seasonal means of spring Soil Moisture (SM), Sea Level Pressure (SLP) and Sea Surface Temperature (SST) are used as predictors of mean summer T2m. For SSTs, we test the potential predictability of T2m using three different regions. These regions include what we define as: Extratropical North Atlantic (ENA), Tropical North Atlantic (TNA), and North Atlantic (NA). The predictability is explored in the ERA20c reanalysis and in comprehensive Earth System Model (ESM) fields. The results are provided for the European domain on a horizontal grid of 1°x1° degrees.</p><p>In order to identify the local T2m predictability related to the different predictor variables, we first built Univariate Linear Regression models, one for every predictor. The regression models are calibrated and validated during 1902-1950 and a prediction is provided for the periods 1951-1998, 1951-2004, and 1951-2008, respectively. The resulting correlation maps between the original and the predicted T2m anomalies showed that for the predictor variables SLP, SM, and SST<sub>ENA</sub> the results of the experiments using ESM data share similar T2m predictability patterns with the results of the experiments using reanalysis data. Most prominent disagreements between the predictability patterns resulting from ESMs and from ERA20c refers to the T2m prediction that utilizes tropical SSTs. SM is identified as the most important predictor for the summer European temperature predictability.</p><p>The ERA20c data show that the SM predictor field can be used for the T2m prediction over most of our study region west of 15° E and that the ENA SSTs can be used for the prediction over Europe east of 15° E. The resulting gridded correlation coefficients vary between 0.3 and 0.5. These results are not sensitive to the prediction period and to the number of Canonical Coefficients used in the regression model. Our approach complements existing numerical seasonal forecast frameworks and can be implemented for ensemble prediction studies.</p>


2009 ◽  
Vol 13 (11) ◽  
pp. 2221-2231 ◽  
Author(s):  
J. A. Velázquez ◽  
T. Petit ◽  
A. Lavoie ◽  
M.-A. Boucher ◽  
R. Turcotte ◽  
...  

Abstract. Hydrological forecasting consists in the assessment of future streamflow. Current deterministic forecasts do not give any information concerning the uncertainty, which might be limiting in a decision-making process. Ensemble forecasts are expected to fill this gap. In July 2007, the Meteorological Service of Canada has improved its ensemble prediction system, which has been operational since 1998. It uses the GEM model to generate a 20-member ensemble on a 100 km grid, at mid-latitudes. This improved system is used for the first time for hydrological ensemble predictions. Five watersheds in Quebec (Canada) are studied: Chaudière, Châteauguay, Du Nord, Kénogami and Du Lièvre. An interesting 17-day rainfall event has been selected in October 2007. Forecasts are produced in a 3 h time step for a 3-day forecast horizon. The deterministic forecast is also available and it is compared with the ensemble ones. In order to correct the bias of the ensemble, an updating procedure has been applied to the output data. Results showed that ensemble forecasts are more skilful than the deterministic ones, as measured by the Continuous Ranked Probability Score (CRPS), especially for 72 h forecasts. However, the hydrological ensemble forecasts are under dispersed: a situation that improves with the increasing length of the prediction horizons. We conjecture that this is due in part to the fact that uncertainty in the initial conditions of the hydrological model is not taken into account.


2018 ◽  
Vol 146 (10) ◽  
pp. 3143-3162 ◽  
Author(s):  
Juan Jesús González-Alemán ◽  
Jenni L. Evans ◽  
Alex M. Kowaleski

Abstract Hurricane Alex was an extremely rare hurricane event, the first North Atlantic hurricane to form in January since 1938. Alex developed from an extratropical low pressure system that formed over the western North Atlantic basin, and then underwent tropical transition after moving to the eastern basin. It subsequently underwent anomalous extratropical transition (ET) just north of the Azores Islands. We examine the factors affecting Alex’s structural evolution and the predictability of that evolution. Potential scenarios of structural development are identified from a 51-member forecast ensemble from the European Centre for Medium-Range Weather Forecasts Ensemble Prediction System (ECMWF-EPS), initialized at 0000 UTC 10 January 2016. The EPS forecasts are clustered using a regression mixture model based on the storm’s path through the cyclone phase space. Composite maps constructed from these clusters are used to investigate the role of synoptic-scale features on the evolving structure of Hurricane Alex as it interacted with the midlatitude flow. Results suggest that the crucial factor affecting this interplay was the behavior of a large extratropical cyclone and its associated cold front and likely warm conveyor belt upstream of Alex; the intensity of these structures determined whether Alex underwent a typical cold-core ET (as observed) or a warm-seclusion ET. The clustering and compositing methodology proposed not only provides a nuanced analysis of the ensemble forecast variability, helping forecasters to analyze the predictability of future complex tropical–midlatitude interactions, but also presents a method to investigate probable causes of different processes occurring in cyclones.


2019 ◽  
Vol 59 (6) ◽  
pp. 895-902
Author(s):  
N. V. Vakulenko ◽  
D. M. Sonechkin

It is generally accepted to believe that changes in the heat content of North Atlantic can be a source of surprises in the climate evolution, especially the climate of Europe. The RAPID program providing monitoring of this heat content serves to investigate this problem. However, results of such monitoring cover still too short time period to come to any conclusion. In this regard, changes of the North Atlantics sea surface mean temperature which already is observed during a long enough period (from the middle of the 20-th century) is analyzed as an indirect characteristic of the heat content. Wavelets are used for this purpose. Three scales, which define temporal variability of this characteristic, are found: from two to four, from seven up to ten, and about twenty two years. It is assumed that sources of variations of the first two from the specified scales are wobbles of the Earths rotation axis, and the source of variations of the third scale is the Hale's cycle of heliomagnetic activity.


2007 ◽  
Vol 4 (2) ◽  
pp. 655-717 ◽  
Author(s):  
J. Schaake ◽  
J. Demargne ◽  
R. Hartman ◽  
M. Mullusky ◽  
E. Welles ◽  
...  

Abstract. A procedure is presented to construct ensemble forecasts from single-value forecasts of precipitation and temperature. This involves dividing the spatial forecast domain and total forecast period into a number of parts that are treated as separate forecast events. The spatial domain is divided into hydrologic sub-basins. The total forecast period is divided into time periods, one for each model time step. For each event archived values of forecasts and corresponding observations are used to model the joint distribution of forecasts and observations. The conditional distribution of observations for a given single-value forecast is used to represent the corresponding probability distribution of events that may occur for that forecast. This conditional forecast distribution subsequently is used to create ensemble members that vary in space and time using the "Schaake Shuffle" (Clark et al, 2004). The resulting ensemble members have the same space-time patterns as historical observations so that space-time joint relationships between events that have a significant effect on hydrological response tend to be preserved. Forecast uncertainty is space and time-scale dependent. For a given lead time to the beginning of the valid period of an event, forecast uncertainty depends on the length of the forecast valid time period and the spatial area to which the forecast applies. Although the "Schaake Shuffle" procedure, when applied to construct ensemble members from a time-series of single value forecasts, may preserve some of this scale dependency, it may not be sufficient without additional constraint. To account more fully for the time-dependent structure of forecast uncertainty, events for additional "aggregate" forecast periods are defined as accumulations of different "base" forecast periods. The generated ensemble members can be ingested by an Ensemble Streamflow Prediction system to produce ensemble forecasts of streamflow and other hydrological variables that reflect the meteorological uncertainty. The methodology is illustrated by an application to generate temperature and precipitation ensemble forecasts for the American River in California. Parameter estimation and dependent validation results are presented based on operational single-value forecasts archives of short-range River Forecast Center (RFC) forecasts and medium-range ensemble mean forecasts from the National Weather Service (NWS) Global Forecast System (GFS).


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 253
Author(s):  
Luying Ji ◽  
Qixiang Luo ◽  
Yan Ji ◽  
Xiefei Zhi

Bayesian model averaging (BMA) and ensemble model output statistics (EMOS) were used to improve the prediction skill of the 500 hPa geopotential height field over the northern hemisphere with lead times of 1–7 days based on ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP), and UK Met Office (UKMO) ensemble prediction systems. The performance of BMA and EMOS were compared with each other and with the raw ensembles and climatological forecasts from the perspective of both deterministic and probabilistic forecasting. The results show that the deterministic forecasts of the 500 hPa geopotential height distribution obtained from BMA and EMOS are more similar to the observed distribution than the raw ensembles, especially for the prediction of the western Pacific subtropical high. BMA and EMOS provide a better calibrated and sharper probability density function than the raw ensembles. They are also superior to the raw ensembles and climatological forecasts according to the Brier score and the Brier skill score. Comparisons between BMA and EMOS show that EMOS performs slightly better for lead times of 1–4 days, whereas BMA performs better for longer lead times. In general, BMA and EMOS both improve the prediction skill of the 500 hPa geopotential height field.


Sign in / Sign up

Export Citation Format

Share Document