Aerosol acidity as a driver of aerosol formation and nutrient deposition to ecosystems

Author(s):  
Athanasios Nenes ◽  
Maria Kanakidou ◽  
Spyros Pandis ◽  
Armistead Russell ◽  
Shaojie Song ◽  
...  

<p>Nitrogen oxides (NOx) and ammonia (NH<sub>3</sub>) from anthropogenic and biogenic emissions are central contributors to particulate matter (PM) concentrations worldwide. Ecosystem productivity can also be strongly modulated by the atmospheric deposition of this inorganic "reactive nitrogen" nutrient. The response of PM and nitrogen deposition to changes in the emissions of both compounds is typically studied on a case-by-case basis, owing in part to the complex thermodynamic interactions of these aerosol precursors with other PM constituents. In the absence of rain, much of the complexity of nitrogen deposition is driven by the large difference in dry deposition velocity when a nitrogen-containing molecule is in the gas or condensed phase.</p><p>Here we present a simple but thermodynamically consistent approach that expresses the chemical domains of sensitivity of aerosol particulate matter to NH<sub>3</sub> and HNO<sub>3</sub> availability in terms of aerosol pH and liquid water content. From our analysis, four policy-relevant regimes emerge in terms of sensitivity: i) NH<sub>3</sub>-sensitive, ii) HNO<sub>3</sub>-sensitive, iii) combined NH<sub>3</sub> and HNO<sub>3</sub> sensitive, and, iv) a domain where neither NH<sub>3</sub> and HNO<sub>3</sub> are important for PM levels (but only nonvolatile precursors such as NVCs and sulfate). When this framework is applied to ambient measurements or predictions of PM and gaseous precursors, the “chemical regime” of PM sensitivity to NH3 and HNO3 availability is directly determined. </p><p>The same framework is then extended to consider the impact of gas-to-particle partitioning, on the deposition velocity of NH<sub>3</sub> and HNO<sub>3</sub> individually, and combined affects the dry deposition of inorganic reactive nitrogen. Four regimes of deposition velocity emerge: i) HNO<sub>3</sub>-fast, NH<sub>3</sub>-slow, ii) HNO<sub>3</sub>-slow, NH<sub>3</sub>-fast, iii) HNO<sub>3</sub>-fast, NH<sub>3</sub>-fast, and, iv) HNO<sub>3</sub>-slow, NH<sub>3</sub>-slow. Conditions that favor strong partitioning of species to the aerosol phase strongly delay the deposition of reactive nitrogen species and promotes their accumulation in the boundary layer and potential for long-range transport. </p><p>The use of these regimes allows novel insights and is an important tool to evaluate chemical transport models. Most notably, we find that nitric acid displays considerable variability of dry deposition flux, with maximum deposition rates found in the Eastern US (close to gas-deposition rates) and minimum rates for North Europe and China. Strong reductions in deposition velocity lead to considerable accumulation of nitrate aerosol in the boundary layer –up to 10-fold increases in PM2.5 nitrate aerosol, eventually being an important contributor to high PM2.5 levels observed during haze episodes. With this new understanding, aerosol pH and associated liquid water content can be understood as control parameters that drive PM formation and dry deposition flux and arguably can catalyze the accumulation of aerosol precursors that cause intense haze events throughout the globe.</p>

2021 ◽  
Vol 21 (8) ◽  
pp. 6023-6033
Author(s):  
Athanasios Nenes ◽  
Spyros N. Pandis ◽  
Maria Kanakidou ◽  
Armistead G. Russell ◽  
Shaojie Song ◽  
...  

Abstract. Ecosystem productivity is strongly modulated by the atmospheric deposition of inorganic reactive nitrogen (the sum of ammonium and nitrate). The individual contributions of ammonium and nitrate vary considerably over space and time, giving rise to complex patterns of nitrogen deposition. In the absence of rain, much of this complexity is driven by the large difference between the dry deposition velocity of nitrogen-containing molecules in the gas or condensed phase. Here we quantify how aerosol liquid water and acidity, through their impact on gas–particle partitioning, modulate the deposition velocity of total NH3 and total HNO3 individually while simultaneously affecting the dry deposition of inorganic reactive nitrogen. Four regimes of deposition velocity emerge: (i) HNO3 – fast, NH3 – slow, (ii) HNO3 – slow, NH3 – fast, (iii) HNO3 – fast, NH3 – fast, and (iv) HNO3 – slow, NH3 – slow. Conditions that favor partitioning of species to the aerosol phase strongly reduce the local deposition of reactive nitrogen species and promote their accumulation in the boundary layer and potential for long-range transport. Application of this framework to select locations around the world reveals fundamentally important insights: the dry deposition of total ammonia displays little sensitivity to pH and liquid water variations, except under conditions of extreme acidity and/or low aerosol liquid water content. The dry deposition of total nitric acid, on the other hand, is quite variable, with maximum deposition velocities (close to gas deposition rates) found in the eastern United States and minimum velocities in northern Europe and China. In the latter case, the low deposition velocity leads to up to 10-fold increases in PM2.5 nitrate aerosol, thus contributing to the high PM2.5 levels observed during haze episodes. In this light, aerosol pH and associated liquid water content can be considered to be control parameters that drive dry deposition flux and can accelerate the accumulation of aerosol contributing to intense haze events throughout the globe.


2020 ◽  
Author(s):  
Athanasios Nenes ◽  
Spyros N. Pandis ◽  
Maria Kanakidou ◽  
Armistead Russell ◽  
Shaojie Song ◽  
...  

Abstract. Ecosystem productivity is strongly modulated by the atmospheric deposition of inorganic reactive nitrogen (the sum of ammonium and nitrate). The individual contributions of ammonium and nitrate vary considerably over space and time, giving rise to complex patterns of nitrogen deposition. In the absence of rain, much of this complexity is driven by the large difference between the dry deposition velocity of nitrogen-containing molecules in the gas or condensed phase. Here we quantify how aerosol liquid water and acidity, through their impact on gas-to-particle partitioning, modulate the deposition velocity of NH3 and HNO3 individually, while simultaneously affecting the dry deposition of inorganic reactive nitrogen. Four regimes of deposition velocity emerge: i) HNO3-fast, NH3-slow, ii) HNO3-slow, NH3-fast, iii) HNO3-fast, NH3-fast, and, iv) HNO3-slow, NH3-slow. Conditions that favor partitioning of species to the aerosol phase strongly reduce the deposition of reactive nitrogen species and promote their accumulation in the boundary layer and potential for long-range transport. Application of this framework to select locations around the world reveals fundamentally important insights: The dry deposition of total ammonia displays little sensitivity to pH and liquid water variations, except under conditions of extreme acidity and/or low aerosol liquid water content. The dry deposition of total nitric acid, on the other hand, is quite variable, with maximum deposition velocities (close to gas-deposition rates) found in the Eastern US and minimum velocities in Northern Europe and China. In the latter case, the low deposition velocity leads to up to 10-fold increases in PM2.5 nitrate aerosol, thus contributing to the high PM2.5 levels observed during haze episodes. In this light, aerosol pH and associated liquid water content can be considered as control parameters that drive dry deposition flux and can accelerate the accumulation of aerosol contributing to intense haze events throughout the globe.


PLoS ONE ◽  
2016 ◽  
Vol 11 (7) ◽  
pp. e0158616 ◽  
Author(s):  
Lijuan Zhu ◽  
Jiakai Liu ◽  
Ling Cong ◽  
Wenmei Ma ◽  
Wu Ma ◽  
...  

2020 ◽  
Author(s):  
Ifayoyinsola Ibikunle ◽  
Andreas Beyersdorf ◽  
Pedro Campuzano-Jost ◽  
Chelsea Corr ◽  
John D. Crounse ◽  
...  

Abstract. Using a new approach that constrains thermodynamic modeling of aerosol composition with measured gas-to-particle partitioning of inorganic nitrate, we estimate the acidity levels for aerosol sampled in the South Korean planetary boundary layer during the NASA/NIER KORUS-AQ field campaign. The pH (mean ± 1σ = 2.43 ± 0.68) and aerosol liquid water content determined were then used to determine the chemical regime of the inorganic fraction of particulate matter (PM) sensitivity to ammonia and nitrate availability. We found that the aerosol formation is always sensitive to HNO3 levels, especially in highly polluted regions, while it is only exclusively sensitive to NH3 in some rural/remote regions. Nitrate levels are further promoted because dry deposition velocity is low and allows its accumulation in the boundary layer. Because of this, HNO3 reductions achieved by NOx controls prove to be the most effective approach for all conditions examined, and that NH3 emissions can only partially affect PM reduction for the specific season and region. Despite the benefits of controlling PM formation to reduce ammonium-nitrate aerosol and PM mass, changes in the acidity domain can significantly affect other processes and sources of aerosol toxicity (such as e.g., solubilization of Fe, Cu and other metals) as well as the deposition patterns of these trace species and reactive nitrate.


2020 ◽  
Vol 20 (8) ◽  
pp. 4933-4949 ◽  
Author(s):  
Genki Katata ◽  
Kazuhide Matsuda ◽  
Atsuyuki Sorimachi ◽  
Mizuo Kajino ◽  
Kentaro Takagi

Abstract. Dry deposition has an impact on nitrogen status in forest environments. However, the mechanism for the high dry-deposition rates of fine nitrate particles (NO3-) observed in forests remains unknown and is thus a potential source of error in chemical transport models (CTMs). Here, we modified and applied a multilayer land surface model coupled with dry-deposition and aerosol dynamic processes for a temperate mixed forest in Japan. This represents the first application of such a model to ammonium nitrate (NH4NO3) gas–particle conversion (gpc) and the aerosol water uptake of reactive nitrogen compounds. Thermodynamics, kinetics, and dry deposition for mixed inorganic particles are modeled by a triple-moment modal method. Data for inorganic mass and size-resolved total number concentrations measured by a filter pack and electrical low-pressure impactor in autumn were used for model inputs and subsequent numerical analysis. The model successfully reproduces turbulent fluxes observed above the canopy and vertical micrometeorological profiles noted in our previous studies. The sensitivity tests with and without gpc demonstrated clear changes in the inorganic mass and size-resolved total number concentrations within the canopy. The results also revealed that within-canopy evaporation of NH4NO3 under dry conditions significantly enhances the deposition flux of fine-NO3- and fine-NH4+ particles, while reducing the deposition flux of nitric acid gas (HNO3). As a result of the evaporation of particulate NH4NO3, the calculated daytime mass flux of fine NO3- over the canopy was 15 times higher in the scenario of “gpc” than in the scenario of “no gpc”. This increase caused high contributions from particle deposition flux (NO3- and NH4+) to total nitrogen flux over the forest ecosystem (∼39 %), although the contribution of NH3 was still considerable. A dry-deposition scheme coupled with aerosol dynamics may be required to improve the predictive accuracy of chemical transport models for the surface concentration of inorganic reactive nitrogen.


2017 ◽  
Vol 17 (14) ◽  
pp. 8999-9017 ◽  
Author(s):  
Viral Shah ◽  
Lyatt Jaeglé

Abstract. Oxidized mercury (Hg(II)) is chemically produced in the atmosphere by oxidation of elemental mercury and is directly emitted by anthropogenic activities. We use the GEOS-Chem global chemical transport model with gaseous oxidation driven by Br atoms to quantify how surface deposition of Hg(II) is influenced by Hg(II) production at different atmospheric heights. We tag Hg(II) chemically produced in the lower (surface–750 hPa), middle (750–400 hPa), and upper troposphere (400 hPa–tropopause), in the stratosphere, as well as directly emitted Hg(II). We evaluate our 2-year simulation (2013–2014) against observations of Hg(II) wet deposition as well as surface and free-tropospheric observations of Hg(II), finding reasonable agreement. We find that Hg(II) produced in the upper and middle troposphere constitutes 91 % of the tropospheric mass of Hg(II) and 91 % of the annual Hg(II) wet deposition flux. This large global influence from the upper and middle troposphere is the result of strong chemical production coupled with a long lifetime of Hg(II) in these regions. Annually, 77–84 % of surface-level Hg(II) over the western US, South America, South Africa, and Australia is produced in the upper and middle troposphere, whereas 26–66 % of surface Hg(II) over the eastern US, Europe, and East Asia, and South Asia is directly emitted. The influence of directly emitted Hg(II) near emission sources is likely higher but cannot be quantified by our coarse-resolution global model (2° latitude  ×  2.5° longitude). Over the oceans, 72 % of surface Hg(II) is produced in the lower troposphere because of higher Br concentrations in the marine boundary layer. The global contribution of the upper and middle troposphere to the Hg(II) dry deposition flux is 52 %. It is lower compared to the contribution to wet deposition because dry deposition of Hg(II) produced aloft requires its entrainment into the boundary layer, while rain can scavenge Hg(II) from higher altitudes more readily. We find that 55 % of the spatial variation of Hg wet deposition flux observed at the Mercury Deposition Network sites is explained by the combined variation of precipitation and Hg(II) produced in the upper and middle troposphere. Our simulation points to a large role of the dry subtropical subsidence regions. Hg(II) present in these regions accounts for 74 % of Hg(II) at 500 hPa over the continental US and more than 60 % of the surface Hg(II) over high-altitude areas of the western US. Globally, it accounts for 78 % of the tropospheric Hg(II) mass and 61 % of the total Hg(II) deposition. During the Nitrogen, Oxidants, Mercury, and Aerosol Distributions, Sources, and Sinks (NOMADSS) aircraft campaign, the contribution of Hg(II) from the dry subtropical regions was found to be 75 % when measured Hg(II) exceeded 250 pg m−3. Hg(II) produced in the upper and middle troposphere subsides in the anticyclones, where the dry conditions inhibit the loss of Hg(II). Our results highlight the importance the subtropical anticyclones as the primary conduits for the production and export of Hg(II) to the global atmosphere.


2018 ◽  
Author(s):  
Shelley C. van der Graaf ◽  
Enrico Dammers ◽  
Martijn Schaap ◽  
Jan Willem Erisman

Abstract. Atmospheric levels of reactive nitrogen have substantially increased during the last century resulting in increased nitrogen deposition to ecosystems, causing harmful effects such as soil acidification, reduction in plant biodiversity and eutrophication in lakes and the ocean. Recent developments in the use of atmospheric remote sensing enabled us to resolve concentration fields of NH3 with larger spatial coverage and these observations may be used to improve the quantification of NH3 deposition. In this paper we use a relatively simple, data-driven method to derive dry deposition fluxes and surface concentrations of NH3 for Europe and for the Netherlands. The aim of this paper is to determine for the applicability and the limitations of this method for NH3 using space-born observations of the Infrared Atmospheric Sounding Interferometer (IASI) and the LOTOS-EUROS atmospheric transport model. The original modelled dry NH3 deposition flux from LOTOS-EUROS and the flux inferred from IASI are compared to indicate areas with large discrepancies between the two and where potential model improvements are needed. The largest differences in derived dry deposition fluxes occur in large parts of Central Europe, where the satellite-observed NH3 concentrations are higher than the modelled ones, and in Switzerland, northern Italy (Po Valley) and southern Turkey, where the modelled NH3 concentrations are higher than the satellite-observed ones. A sensitivity analysis of 8 model input parameters important for NH3 dry deposition modelling showed that the IASI-derived dry NH3 deposition fluxes may vary from ~ 20 % up to ~ 50 % throughout Europe. Variations in the dry deposition velocity used for NH3 led to the largest deviations in the IASI-derived dry NH3 deposition flux and should be focused on in the future. A comparison of NH3 surface concentrations with in-situ measurements of several established networks (EMEP, MAN and LML) showed no significant, or consistent improvement in the IASI-derived NH3 surface concentrations compared to the originally modelled NH3 surface concentrations from LOTOS-EUROS. It is concluded that the IASI-derived NH3 deposition fluxes do not show strong improvements compared to modelled NH3 deposition fluxes and there is future need for better, more robust, methods to derive NH3 dry deposition fluxes.


Sign in / Sign up

Export Citation Format

Share Document