Robust determination of S-wave velocity profiles by using mini-arrays

Author(s):  
Luca D'Auria ◽  
Marina Alfaro Rodríguez ◽  
Daniel Bermejo López ◽  
Jemma Crowther ◽  
Lucy Kennett ◽  
...  

<p>Microtremor measurements represent a useful tool to study the seismic amplification in urban areas. One of the methods that permits characterizing seismic properties of soils is the H/V spectral ratio. This technique is especially useful when dealing with shallow low velocity layers, allowing an effective determination of its velocity and thickness. The H/V technique is very convenient to realize microzonation surveys because of its simplicity and low cost. However, it is recommended to combine it with other geophysical methods and geological information to better constrain the resulting models. In recent years the use of ambient noise cross-correlation has been widely used to retrieve Rayleigh wave dispersion curves between pairs of stations. These curves carry an important information about the subsoil velocity structure and have been already exploited for seismic microzonation purposes.</p><p>The aforementioned methods, H/V spectra and Rayleigh wave dispersion curves, in principle allow obtaining 1D body wave and density profiles. However, one of the most important problems when inverting H/V and dispersion curves, is the poor constraint on density and P wave velocities. This difficulty can be partially solved by imposing some constraints over the inverse problem (e.g. fixing the Vp/Vs ratio) or by devising inverse methods allowing the different parameters to be determined in different steps.</p><p>We propose a novel approach which consists of a joint inversion of H/V spectra and Rayleigh wave dispersion curves, realized simultaneously for all the elements of the mini-array. This allows increasing the ratio between the number of available data and the number of parameters to invert, improving the stability of the inverse problem and reducing the uncertainties on the estimated parameters. For the evaluation of the retrieved model, we used the trans-dimensional Monte Carlo exploration which has shown to be very efficient in evaluating the quality of the resulting model, through an intensive exploration of the “a posteriori” probability density function over the model parameter space.</p><p>We show the improvement in the obtained results on synthetic tests as well as on actual data. In particular we apply this method, named method <strong>MARISMA</strong> (<strong>M</strong>ini <strong>AR</strong>rays for se<strong>IS</strong>mic <strong>M</strong>icrozon<strong>A</strong>tion) on a dataset recorded in the town of San Cristóbal de La Laguna (Tenerife, Canary Islands, Spain) during the summer of 2019.</p>

Geophysics ◽  
2003 ◽  
Vol 68 (3) ◽  
pp. 782-790 ◽  
Author(s):  
Kristen S. Beaty ◽  
Douglas R. Schmitt

Rayleigh‐wave dispersion is used to study the near‐surface elastic properties of a thick, lacustrine clay to approximately 10 m depth. Ten repeated sets of Rayleigh dispersion curves were obtained through late spring to early fall. A variety of methodologies were used to extract the dispersion curves, but a modified frequency–ray parameter (f − p) method most successfully yields dispersion curves for the first three Rayleigh modes. The Rayleigh‐wave velocities varied from 100 to ∼350 m/s with frequency over the band from 75 to 10 Hz. Over this band, these velocities did not measurably vary during the study period. The observed phase velocity curves were inverted with P‐wave and density values obtained from shallow coring to obtain the shear‐wave velocity structure at the site down to > 14 m. This case study highlights the robust, repeatable, nature of surface wave dispersion methods when care is taken in the acquisition of field data.


2016 ◽  
Vol 20 (1) ◽  
pp. 1-11 ◽  
Author(s):  
V. Corchete

<p>The elastic structure beneath Greenland is shown by means of S-velocity maps for depths ranging from zero to 350 km, determined by the regionalization and inversion of Rayleigh-wave dispersion. The traces of 50 earthquakes, occurring from 1990 to 2011, have been used to obtain Rayleigh-wave dispersion data. These earthquakes were registered by 21 seismic station located in Greenland and the surrounding area. The dispersion curves were obtained for periods between 5 and 200 s, by digital filtering with a combination of MFT (Multiple Filter Technique) and TVF (Time Variable Filtering). Later, all seismic events (and some stations) were grouped to obtain a dispersion curve for each source-station path. These dispersion curves were regionalized and inverted according to the generalized inversion theory, to obtain shear-wave velocity models for a rectangular grid of 16x20 points. The shear-velocity structure obtained through this procedure is shown in the S-velocity maps plotted for several depths. These results agree well with the geology and other geophysical results previously obtained. The obtained S-velocity models suggest the existence of lateral and vertical heterogeneity. The zones with consolidated and old structures present greater S-velocity values than the other zones, although this difference can be very little or negligible in some case. Nevertheless, in the depth range of 15 to 45 km, the different Moho depths present in the study area generate the principal variation of S-velocity. A similar behaviour is found for the depth range from 80 to 230 km, in which the lithosphere-asthenosphere boundary (LAB) generates the principal variations of S-velocity. Finally, the new and interesting feature obtained in this study: the definition of the base of the asthenosphere (for the whole study area and for depths ranging from 130 to 280 km, respectively) should be highlighted.</p><p> </p><p><strong>Estructura de velocidad de cizalla de Groenlandia obtenida de análisis de onda Rayleigh</strong></p><p><strong><br /></strong></p><p><strong>Resumen</strong></p><p>La estructura elástica bajo Groenlandia es mostrada por medio de mapas de velocidad de onda para profundidades variando desde cero a 350 km, determinada por la regionalización e inversión de la dispersión de onda Rayleigh. Las trazas de 50 terremotos, ocurridos desde 1990 hasta 2011, han sido usados para obtener datos de dispersión de onda Rayleigh. Estos terremotos fueron registrados por 21 estaciones sísmicas localizadas en Groenlandia y el área circundante. Las curvas de dispersión fueron obtenidas para periodos entre 5 y 200 s, por filtrado digital con una combinación de MFT (Técnica de Filtrado Múltiple) y TVF (Filtrado en Tiempo Variable). Después, todos los eventos sísmicos (y algunas estaciones) fueron agrupados para obtener una curva de dispersión para cada trayecto fuente-estación. Estas curvas de dispersión fueron regionalizadas e invertidas de acuerdo con la teoría de la inversión generalizada, para obtener modelos de velocidad de cizalla para una rejilla rectangular de 16x20 puntos. La estructura de velocidad de cizalla obtenida a través de este procedimiento es mostrada in los mapas de velocidad de onda S representados para varias profundidades. Estos resultados muestran buen acuerdo con la geología y con otros resultados geofísicos obtenidos previamente. Los modelos de velocidad de onda S obtenidos sugieren la existencia de heterogeneidad lateral y vertical. Las zonas con estructuras antiguas y consolidadas presentan mayores valores de velocidad de onda S que las otras zonas, aunque esta diferencia puede ser muy pequeña o despreciable en algún caso. No obstante, en el rango de profundidad de 15 a 45 km, las diferentes profundidades del Moho presentes en el área de estudio generan la principal variación de velocidad de onda S. Un comportamiento similar es encontrado para el rango de profundidad desde 80 a 230 km, en el cual la frontera litosfera-astenosfera (LAB) genera las principales variaciones de velocidad de onda S. Finalmente, debería ser destacada la nueva e interesante característica obtenida en este estudio: la definición de la base de la astenosfera (para el área de estudio completa y para profundidades variando desde 130 a 280 km, respectivamente).</p>


2020 ◽  
Author(s):  
Yiming Bai ◽  
Yumei He ◽  
Xiaohui Yuan ◽  
Myo Thant ◽  
Kyaing Sein ◽  
...  

&lt;p&gt;The territory of Myanmar, situated at the eastern flank of the India-Asia collision zone, is characterized by complex tectonic structure and high seismicity. From west to east, this region consists of three nearly NS-trending tectonic units: the Indo-Burma Ranges, the Central Basin and the Shan Plateau. Detailed structure of the crust and uppermost mantle beneath Myanmar can provide crucial constraints on regional tectonics, subduction dynamics as well as seismic hazard assessment. Yet seismic velocity structure beneath this region is poorly determined due to sparse regional seismic networks.&lt;/p&gt;&lt;p&gt;In this study, we utilize seismic data recorded at 80 broadband stations in Myanmar, among which 70 stations were deployed in 2016 under the project of China-Myanmar Geophysical Survey in the Myanmar Orogen (CMGSMO), 9 stations are operated by IRIS and the remaining one is from GEOFON. We measured the Rayleigh-wave phase velocity dispersion from the ambient noise cross-correlations at periods between 5 s and 40 s by using the automatic frequency-time analysis (AFTAN). A fast marching surface wave tomography (FMST) approach was then adopted to invert the 2-D phase velocity maps in the study region. Our preliminary results show variable crustal structure across central Myanmar, with a strong low-velocity zone north of 22&amp;#176;N in the Indo-Burma Ranges. Since Rayleigh-wave dispersion is more sensitive to absolute velocity speed than to velocity contrasts, the ongoing study jointly inverts the dispersion data with P-wave receiver functions to better determine the velocity discontinuities and thus provides tighter constraints on the shear-velocity structure beneath central Myanmar.&lt;/p&gt;


2019 ◽  
Vol 218 (1) ◽  
pp. 547-559 ◽  
Author(s):  
Yuhang Lei ◽  
Hongyan Shen ◽  
Xinxin Li ◽  
Xin Wang ◽  
Qingchun Li

2010 ◽  
Vol 53 (2) ◽  
Author(s):  
Luigia Cristiano ◽  
Simona Petrosino ◽  
Gilberto Saccorotti ◽  
Matthias Ohrnberger ◽  
Roberto Scarpa

Sign in / Sign up

Export Citation Format

Share Document