Seismic reflection imaging of the low-angle Panamint Valley normal fault system, eastern California, USA

Author(s):  
Ryan Gold ◽  
William Stephenson ◽  
Richard Briggs ◽  
Christopher DuRoss ◽  
Eric Kirby ◽  
...  

<p>A fundamental question in seismic hazard analysis is whether <30º-dipping low-angle normal faults (LANFs) slip seismogenically. In comparison to more steeply dipping (45-60º) normal faults, LANFs have the potential to produce stronger shaking given increased potential rupture area in the seismogenic crust and increased proximity to manmade structures built on the hanging wall. While inactive LANFs have been documented globally, examples of seismogenically active LANFs are limited. The western margin of the Panamint Range in eastern California is defined by an archetype LANF that dips west beneath Panamint Valley and has evidence of Quaternary motion. In addition, high-angle dextral-oblique normal faults displace mid-to-late Quaternary alluvial fans near the range front. To image shallow (<1 km depth), crosscutting relationships between the low- and high-angle faults along the range front, we acquired two high-resolution P-wave seismic reflection profiles. The northern ~4.7-km profile crosses the 2-km-wide Wildrose Graben and the southern ~1.1-km profile extends onto the Panamint Valley playa, ~7.5 km S of Ballarat, CA. The profile across the Wildrose Graben reveals a robust, low-angle reflector that likely represents the LANF separating Plio-Pleistocene alluvial fanglomerate and pre-Cambrian meta-sedimentary deposits. High-angle faults interpreted in the seismic profile correspond to fault scarps on Quaternary alluvial fan surfaces. Interpretation of the reflection data suggests that the high-angle faults vertically displace the LANF up to 70 m within the Wildrose Graben. Similarly, the profile south of Ballarat reveals a low-angle reflector, which appears both rotated and displaced up to 260 m by high-angle faults. These results suggest that near the Panamint range front, the high-angle faults are the dominant late Quaternary structures. We conclude that, at least at shallow (<1 km) depths, the LANF we imaged is not seismogenically active today.</p>

2020 ◽  
Vol 222 (1) ◽  
pp. 27-53 ◽  
Author(s):  
Sam Wimpenny ◽  
Carlos Benavente ◽  
Alex Copley ◽  
Briant Garcia ◽  
Lorena Rosell ◽  
...  

SUMMARY Orogenic plateaus can exist in a delicate balance in which the buoyancy forces due to gravity acting on the high topography and thick crust of the plateau interior are balanced by the compressional forces acting across their forelands. Any shortening or extension within a plateau can indicate a perturbation to this force balance. In this study, we present new observations of the kinematics, morphology and slip rates of active normal faults in the South Peruvian Altiplano obtained from field studies, high-resolution DEMs, Quaternary dating and remote sensing. We then investigate the implications of this faulting for the forces acting on the Andes. We find that the mountains are extending ∼NNE–SSW to ∼NE–SW along a normal fault system that cuts obliquely across the Altiplano plateau, which in many places reactivates Miocene-age reverse faults. Radiocarbon dating of offset late Quaternary moraines and alluvial fan surfaces indicates horizontal extension rates across the fault system of between 1 and 4 mm yr–1—equivalent to an extensional strain rate in the range of 0.5–2 × 10−8 1 yr–1 averaged across the plateau. We suggest the rate and pattern of extension implies there has been a change in the forces exerted between the foreland and the Andes mountains. A reduction in the average shear stresses on the sub-Andean foreland detachment of ≲4 MPa (20–25 per cent of the total force) can account for the rate of extension. These results show that, within a mountain belt, the pattern of faulting is sensitive to small spatial and temporal variations in the strength of faults along their margins.


2004 ◽  
Vol 52 (3) ◽  
pp. 215-233 ◽  
Author(s):  
Glen S. Stockmal ◽  
Art Slingsby ◽  
John W.F. Waldron

Abstract Recent hydrocarbon exploration in western Newfoundland has resulted in six new wells in the Port au Port Peninsula area. Port au Port No.1, drilled in 1994/95, penetrated the Cambro-Ordovician platform and underlying Grenville basement in the hanging wall of the southeast-dipping Round Head Thrust, terminated in the platform succession in the footwall of this basement-involved inversion structure, and discovered the Garden Hill petroleum pool. The most recent well, Shoal Point K-39, was drilled in 1999 to test a model in which the Round Head Thrust loses reverse displacement to the northeast, eventually becoming a normal fault. This model hinged on an interpretation of a seismic reflection survey acquired in 1996 in Port au Port Bay. This survey is now in the public domain. In our interpretation of these data, the Round Head Thrust is associated with another basement-involved feature, the northwest-dipping Piccadilly Bay Fault, which is mapped on Port au Port Peninsula. Active as normal faults in the Taconian foreland, both these faults were later inverted during Acadian orogenesis. The present reverse offset on the Piccadilly Bay Fault was previously interpreted as normal offset on the southeast-dipping Round Head Thrust. Our new interpretation is consistent with mapping on Port au Port Peninsula and north of Stephenville, where all basement-involved faults are inverted and display reverse senses of motion. It also explains spatially restricted, enigmatic reflections adjacent to the faults as carbonate conglomerates of the Cape Cormorant Formation or Daniel’s Harbour Member, units associated with inverted thick-skinned faults. The K-39 well, which targeted the footwall of the Round Head Thrust, actually penetrated the hanging wall of the Piccadilly Bay Fault. This distinction is important because the reservoir model invoked for this play involved preferential karstification and subsequent dolomitization in the footwalls of inverted thick-skinned faults. The apparent magnitude of structural inversion across the Piccadilly Bay Fault suggests other possible structural plays to the northeast of K-39.


2021 ◽  
Author(s):  
Amin Kahrizi ◽  
Matthias Delescluse ◽  
Mathieu Rodriguez ◽  
Pierre-Henri Roche ◽  
Anne Bécel ◽  
...  

<p>Acoustic full-waveform inversion (FWI), or waveform tomography, involves use of both phase and amplitude of the recorded compressional waves to obtain a high-resolution P-wave velocity model of the propagation medium. Recent theoretical and computing advances now allow the application of this highly non-linear technique to field data. This led to common use of the FWI for industrial purposes related to reservoir imaging, physical properties of rocks, and fluid flow. Application of FWI in the academic domain has, so far, been limited, mostly because of the lack of adequate seismic data. Modern multichannel seismic (MCS) reflection data acquisition now  have long offsets which, in some cases, enable constraining FWI-derived subsurface velocities at a significant enough depth to be useful for structural or tectonic purposes.</p><p>In this study, we show how FWI can help decipher the record of a fault activity through time at the Shumagin Gap in Alaska. The MCS data were acquired on R/V Marcus G. Langseth during the 2011 ALEUT cruise using two 8-km-long seismic streamers and a 6600 cu. in. tuned airgun array. One of the most noticeable reflection features imaged on two profiles is a large, landward-dipping normal fault in the overriding plate; a structural configuration making the area prone to generating both transoceanic and local tsunamis, including from landslides. This fault dips ~40°- 45°, cuts the entire crust and connects to the plate boundary fault at ~35 km depth, near the intersection of the megathrust with the forearc mantle wedge. The fault system reaches the surface at the shelf edge 75 km from the trench and forms the ~6-km deep Sanak basin. However, the record of the recent fault activity remains unclear as contouritic currents tend to be trapped by the topography created by faults, even after they are no longer active.  Erosion surfaces and onlaps from contouritic processes as well as gravity collapses and mass transport deposits result in a complex sedimentary record that make it challenging to evaluate the fault activity using conventional MCS imaging alone. The long streamers used facilitated recording of refraction arrivals in the targeted continental slope area, which permitted running streamer traveltime tomography followed by FWI to produce coincident detailed velocity profiles to complement the reflection sections. We performed FWI imaging on two 40-km-long sections of the ALEUT lines crossing the Sanak basin. The images reveal low velocities of mass transport deposits as well as velocity inversions that may indicate mechanically weak layers linking some faults to gravity sliding on a décollement. One section also shows a velocity inversion in continuity to a bottom simulating reflector (BSR) only partially visible in the reflection image. The BSR velocity anomaly abruptly disappears across the main normal fault suggesting either an impermeable barrier or a lack of trapped fluids/gas in the hanging wall.</p>


2021 ◽  
Author(s):  
Miriana Chinello ◽  
Michele Fondriest ◽  
Giulio Di Toro

<p>The Italian Central Apennines are one of the most seismically active areas in the Mediterranean (e.g., L’Aquila 2009, Mw 6.3 earthquake). The mainshocks and the aftershocks of these earthquake sequences propagate and often nucleate in fault zones cutting km-thick limestones and dolostones formations. An impressive feature of these faults is the presence, at their footwall, of few meters to hundreds of meters thick damage zones. However, the mechanism of formation of these damage zones and their role during (1) individual seismic ruptures (e.g., rupture arrest), (2) seismic sequences (e.g., aftershock evolution) and (3) seismic cycle (e.g., long term fault zone healing) are unknown. This limitation is also due to the lack of knowledge regarding the distribution, along strike and with depth, of damage with wall rock lithology, geometrical characteristics (fault length, inherited structures, etc.) and kinematic properties (cumulative displacement, strain rate, etc.) of the associated main faults.</p><p>Previous high-resolution field structural surveys were performed on the Vado di Corno Fault Zone, a segment of the ca. 20 km long Campo Imperatore normal fault system, which accommodated ~ 1500 m of vertical displacement (Fondriest et al., 2020). The damage zone was up to 400 m thick and dominated by intensely fractured (1-2 cm spaced joints) dolomitized limestones with the thickest volumes at fault oversteps and where the fault cuts through an older thrust zone. Here we describe two minor faults located in the same area (Central Apennines), but with shorter length along strike. They both strike NNW-SSE and accommodated a vertical displacement of ~300 m.</p><p>The Subequana Valley Fault is about 9 km long and consists of multiple segments disposed in an en-echelon array. The fault juxtaposes pelagic limestones at the footwall and quaternary deposits at the hanging wall. The damage zone is < 25 m  thick  and comprises fractured (1-2 cm spaced joints) limestones beds with decreasing fracture intensity moving away from the master fault. However, the damage zone thickness increases up to ∼100 m in proximity of subsidiary faults striking NNE-SSW. The latter could be reactivated inherited structures.</p><p>The Monte Capo di Serre Fault is about 8 km long and characterized by a sharp ultra-polished master fault surface which cuts locally dolomitized Jurassic platform limestones. The damage zone is up to 120 m thick and cut by 10-20 cm spaced joints, but it reaches an higher fracture intensity where is cut by subsidiary, possibly inherited, faults striking NNE-SSW.</p><p>Based on these preliminary observations, faults with similar displacement show comparable damage zone thicknesses. The most relevant damage zone thickness variations are related to geometrical complexities rather than changes in lithology (platform vs pelagic carbonates).  In particular, the largest values of damage zone thickness and fracture intensity occur at fault overstep or are associated to inherited structures. The latter, by acting as strong or weak barriers (sensu Das and Aki, 1977) during the propagation of seismic ruptures, have a key role in the formation of damage zones and the growth of normal faults.</p>


2021 ◽  
Author(s):  
◽  
Hamish Cameron

<p>This study investigates the evolution (from initiation to inactivity) of a normal fault system in proximity to active petroleum systems within the Taranaki Basin, New Zealand. The aim of this research is to understand the evolution, interaction, and in some cases, death of normal faults in a region undergoing progressive regional extension. This research provides insight into the geometry, development, and displacement history of new and reactivated normal fault evolution through interpretation of industry standard seismic reflection data at high spatial and temporal resolution. Insight into normal fault evolution provides information on subsidence rates and potential hydrocarbon migration pathways.  Twelve time horizons between 1.2 and 35 Ma have been mapped throughout 1670 square kilometres of the Parihaka and Toro 3D seismic reflection surveys. Fault displacement analysis and backstripping have been used to determine the main phases of fault activity, fault growth patterns, and maximum Displacement/Length ratios. The timing, geometry, and displacement patterns for 110 normal faults with displacements >20 m have been interpreted and analysed using Paradigm SeisEarth and TrapTester 6 seismic interpretation and fault analysis software platforms.  Normal faults within the Parihaka and Toro 3D seismic surveys began developing at ˜11 Ma, with the largest faults accruing up to 1500 m of displacement in <10 Myr (mean throw displacement rate of 0.15mm/yr). Approximately 50% of the 110 mapped faults are associated with pre-existing normal faults and have typical cumulative displacements of ˜20 – 1000 m, with strike parallel lengths of <1 – 23 km. In contrast, new faults have typically greater displacements of 20 – 1400 m, and are generally longer with, with strike parallel lengths of ˜1 – 33 km.   New faults were the first faults within the system to become inactive when strain rates decreased from 0.06 – 0.03 between 3.6 and 3.0 Ma. Eight of the largest faults with > 1000 m cumulative displacement reach the seafloor and are potentially active at present day. An earthquake on one of these faults could be expected to produce MW 2.2 based on the maximum strike-parallel length of the fault plane.</p>


2021 ◽  
Author(s):  
◽  
Hamish Cameron

<p>This study investigates the evolution (from initiation to inactivity) of a normal fault system in proximity to active petroleum systems within the Taranaki Basin, New Zealand. The aim of this research is to understand the evolution, interaction, and in some cases, death of normal faults in a region undergoing progressive regional extension. This research provides insight into the geometry, development, and displacement history of new and reactivated normal fault evolution through interpretation of industry standard seismic reflection data at high spatial and temporal resolution. Insight into normal fault evolution provides information on subsidence rates and potential hydrocarbon migration pathways.  Twelve time horizons between 1.2 and 35 Ma have been mapped throughout 1670 square kilometres of the Parihaka and Toro 3D seismic reflection surveys. Fault displacement analysis and backstripping have been used to determine the main phases of fault activity, fault growth patterns, and maximum Displacement/Length ratios. The timing, geometry, and displacement patterns for 110 normal faults with displacements >20 m have been interpreted and analysed using Paradigm SeisEarth and TrapTester 6 seismic interpretation and fault analysis software platforms.  Normal faults within the Parihaka and Toro 3D seismic surveys began developing at ˜11 Ma, with the largest faults accruing up to 1500 m of displacement in <10 Myr (mean throw displacement rate of 0.15mm/yr). Approximately 50% of the 110 mapped faults are associated with pre-existing normal faults and have typical cumulative displacements of ˜20 – 1000 m, with strike parallel lengths of <1 – 23 km. In contrast, new faults have typically greater displacements of 20 – 1400 m, and are generally longer with, with strike parallel lengths of ˜1 – 33 km.   New faults were the first faults within the system to become inactive when strain rates decreased from 0.06 – 0.03 between 3.6 and 3.0 Ma. Eight of the largest faults with > 1000 m cumulative displacement reach the seafloor and are potentially active at present day. An earthquake on one of these faults could be expected to produce MW 2.2 based on the maximum strike-parallel length of the fault plane.</p>


2021 ◽  
Author(s):  
Fabbi Simone ◽  
Stendardi Francesca ◽  
Capotorti Franco ◽  
Bigi Sabina ◽  
Ricci Valeria ◽  
...  

&lt;p&gt;We present the results of a detailed geological mapping project performed in the southernmost part of the Sibillini Mts., where the Sibillini Thrust (ST), one of the longest compressional structures of the Central Apennines, crops out. In the studied area the Meso-Cenozoic Umbria-Marche carbonate succession overthrusts the Messinian siliciclastic deposits of the adjacent Laga foredeep Basin. After the Messinian/Pliocene compressional tectonic phase, linked with the development of essentially W-dipping thrust systems, the E-verging Apennines accretionary wedge was affected by a Quaternary extensional tectonic phase during which SW-dipping normal fault systems developed. Among these normal faults, the Mt. Vettore extensional system (which includes the Castelluccio Plain fault (CPF) and the Mt. Vettoretto fault (MVF)) is one of the most important, being capable to produce destructive earthquakes (Mw 6.5 October 20, 2016). A long-lasting debate exists in literature concerning the cross-cutting relationships between the ST and the Mt. Vettore normal fault system: i.e., the thrust was alternatively considered as being nondisplaced by the normal faults or variously displaced with throws ranging between ~200 m and &gt;2 km. Unfortunately, where normal faults should cut the thrust, a thick debris cover hides the tectonic structures and only speculative hypotheses can, thus, be done about this issue. In addition, important evidence of pre-thrusting extension is known in the area, that make difficult to discriminate the effective Quaternary activity of faults if the intersection with the compressional structures is not exposed. The aim of this study is to constrain the position of the ST under the debris cover and its relationship with the CPF and MVF, based on the following field data: i) thrust plane attitude; ii) position of the Laga Fm. outcrops, representing the footwall of the ST; iii) hanging wall anticline geometry; iv) geometry of normal faults and their recent activity; v) thickness of the Castelluccio Plain Quaternary infill at the hanging wall of the ST. The thrust position under the debris cover has been determined considering the variation of the hanging wall anticline geometry. In fact, where the Jurassic-Paleogene basinal formations crop out, the hanging wall anticline is well developed with vertical to overturned forelimb and fold axis essentially parallel to the thrust trend. This is crucial, because the occurrence in the field of an incomplete anticline (i.e., lacking the vertical to overturned forelimb) juxtaposed to the Laga Fm. (originally the footwall of the thrust) suggests the displacement of the anticline by a normal fault, allows us to infer the cross-cutting relationship between the tectonic lineaments and to estimate Quaternary normal fault throws. We conclude that the ST was displaced by the CPF with max throw ~250 m, which is consistent with the thickness of the Quaternary infill of the Castelluccio Plain. Both the CPF and the ST are in turn cut by the MVF (the youngest fault of the area, active in the 2016 earthquake) with a ~50 m throw, and is also inferred to partly reuse with negative inversion the ST plane where the plane geometry was favorable to extension.&lt;/p&gt;


2015 ◽  
Vol 55 (2) ◽  
pp. 467
Author(s):  
Alexander Robson ◽  
Rosalind King ◽  
Simon Holford

The authors used three-dimensional (3D) seismic reflection data from the central Ceduna Sub-Basin, Australia, to establish the structural evolution of a linked normal fault assemblage at the extensional top of a gravitationally driven delta system. The fault assemblage presented is decoupled at the base of a marine mud from the late Albian age. Strike-linkage has created a northwest–southeast oriented assemblage of normal fault segments and dip-linkage through Santonian strata, which connects a post-Santonian normal fault system to a Cenomanian-Santonian listric fault system. Cenomanian-Santonian fault growth is on the kilometre scale and builds an underlying structural grain, defining the geometry of the post-Santonian fault system. A fault plane dip-angle model has been created and established through simplistic depth conversion. This converts throw into fault plane dip-slip displacement, incorporating increasing heave of a listric fault and decreasing in dip-angle with depth. The analysis constrains fault growth into six evolutionary stages: early Cenomanian nucleation and radial growth of isolated fault segments; linkage of fault segments by the latest Cenomanian; latest Santonian Cessation of fault growth; erosion and heavy incision during the continental break-up of Australia and Antarctica (c. 83 Ma); vertically independent nucleation of the post-Santonian fault segments with rapid length establishment before significant displacement accumulation; and, continued displacement into the Cenozoic. The structural evolution of this fault system is compatible with the isolated fault model and segmented coherent fault model, indicating that these fault growth models do not need to be mutually exclusive to the growth of normal fault assemblages.


2020 ◽  
Author(s):  
Fabio Villani ◽  
Stefano Maraio ◽  
Pier Paolo Bruno ◽  
Lisa Serri ◽  
Vincenzo Sapia ◽  
...  

&lt;p&gt;We investigate the shallow structure of an active normal fault-zone that ruptured the surface during the 30 October 2016 Mw 6.5 Norcia earthquake (central Italy) using a multidisciplinary geophysical approach. The survey site is located in the Castelluccio basin, an intramontane Quaternary depression in the hangingwall of the SW-dipping Vettore-Bove fault system. The Norcia earthquake caused widespread surface faulting affecting also the Castelluccio basin, where the rupture trace follows the 2 km-long Valle delle Fonti fault (VF), displaying a ~3 m-high fault scarp due to cumulative surface slip of Holocene paleo-earthquakes. We explored the subsurface of the VF fault along a 2-D transect orthogonal to the coseismic rupture on recent alluvial fan deposits, combining very high-resolution seismic refraction tomography, multichannel analysis of surface waves (MASW), reflection seismology and electrical resistivity tomography (ERT).&lt;/p&gt;&lt;p&gt;We acquired the ERT profile using an array of 64 steel electrodes, 2 m-spaced. Apparent resistivity data were then modeled via a linearized inversion algorithm with smoothness constraints to recover the subsurface resistivity distribution. The seismic data were recorded by&amp;#160; a190 m-long single array centered on the surface rupture, using 96 vertical geophones 2 m-spaced and a 5 kg hammer source.&lt;/p&gt;&lt;p&gt;Input data for refraction tomography are ~9000 handpicked first arrival travel-times, inverted through a fully non-linear multi-scale algorithm based on a finite-difference Eikonal solver. The data for MASW were extracted from common receiver configurations with 24 geophones; the dispersion curves were inverted to generate several S-wave 1-D profiles, subsequently interpolated to generate a pseudo-2D Vs section. For reflection data, after a pre-processing flow, the picking of the maximum of semblance on CMP super-gathers was used to define a velocity model (VNMO) for CMP ensemble stack; the final stack velocity macro-model (VNMO) from the CMP processing was smoothed and used for post-stack depth conversion. We further processed Vp, Vs and resistivity models through the K-means algorithm, which performs a cluster analysis for the bivariate data set to individuate relationships between the two sets of variables. The result is an integrated model with a finite number of homogeneous clusters.&lt;/p&gt;&lt;p&gt;In the depth converted reflection section, the subsurface of the VF fault displays abrupt reflection truncations in the 5-60 m depth range suggesting a cumulative fault throw of ~30 m. Furthermore, another normal fault appears in the in the footwall. The reflection image points out alternating high-amplitude reflections that we interpret as a stack of alluvial sandy-gravels layers that thickens in the hangingwall of the VF fault. Resistivity, Vp and Vs models provide hints on the physical properties of the active fault zone, appearing as a moderately conductive (&lt; 150 &amp;#8486;m) elongated body with relatively high-Vp (~1500 m/s) and low-Vs (&lt; 500 m/s). The Vp/Vs ratio &gt; 3 and the Poisson&amp;#8217;s coefficient &gt; 0.4 in the fault zone suggest this is a granular nearly-saturated medium, probably related to the increase of permeability due to fracturing and shearing. The results from the K-means cluster analysis also identify a homogeneous cluster in correspondence of the saturated fault zone.&lt;/p&gt;


2004 ◽  
Vol 141 (1) ◽  
pp. 63-79 ◽  
Author(s):  
ERDİN BOZKURT ◽  
HASAN SÖZBİLİR

Western Turkey is one of the most spectacular regions of widespread active continental extension in the world. The most prominent structures of this region are E–W-trending grabens (e.g. Gediz and Büyük Menderes grabens) and intervening horsts, exposing the Menderes Massif. This paper documents the result of a recent field campaign (field geological mapping and structural analysis) along the southern margin of the modern Gediz Graben of Pliocene (∼ 5 Ma) age. This work provides field evidence that the presently low-angle ductile-brittle detachment fault is cut and displaced by the high-angle graben-bounding normal faults with total displacement exceeding 2.0 km. The evolution of the N–S extension along the Gediz Graben occurred during two episodes, each characterized by a distinct structural styles: (1) rapid exhumation of Menderes Massif in the footwall of low-angle normal fault (core-complex mode) during the Miocene; (2) late stretching of crust producing E–W grabens along high-angle normal faults (rift mode) during Pliocene–Quaternary times, separated by a short-time gap. The later phase is characterized by the deposition of now nearly horizontal sediments of Pliocene age in the hanging walls of the high-angle normal faults and present-day graben floor sediments. The evolution of extension is at variance with orogenic collapse and/or back-arc extension followed by the combined effect of tectonic escape and subduction rollback processes along the Aegean-Cyprean subduction zone. Consequently, it is misleading to describe the Miocene sediments exhumed on shoulders of the Gediz Graben as simple graben fill.


Sign in / Sign up

Export Citation Format

Share Document