scholarly journals Space-Time Landslide Predictive Modelling

Author(s):  
Luigi Lombardo ◽  
Thomas Opitz ◽  
Francesca Ardizzone ◽  
Raphaël Huser ◽  
Fausto Guzzetti

<p>Landslides are nearly ubiquitous phenomena and pose severe threats to people, properties, and the environment. Investigators have for long attempted to estimate landslide hazard to determine where, when, and how destructive landslides are expected to be in an area. This information is useful to design landslide mitigation strategies, and to reduce landslide risk and societal and economic losses. In the geomorphology literature, most attempts at predicting the occurrence of populations of landslides rely on the observation that landslides are the result of multiple interacting, conditioning and triggering factors. Here, we propose a novel Bayesian modelling framework for the prediction of space-time landslide occurrences of the slide type caused by weather triggers. We consider log-Gaussian cox processes, assuming that individual landslides stem from a point process described by an unknown intensity function. We tested our prediction framework in the Collazzone area, Umbria, Central Italy, for which a detailed multi-temporal landslide inventory spanning 1941-2014 is available together with lithological and bedding data. We tested five models of increasing complexity. Our most complex model includes fixed effects and latent spatio-temporal effects, thus largely fulfilling the common definition of landslide hazard in the literature. We quantified the spatio-temporal predictive skill of our model and found that it performed better than simpler alternatives. We then developed a novel classification strategy and prepared an intensity-susceptibility landslide map, providing more information than traditional susceptibility zonations for land planning and management. We expect our novel approach to lead to better projections of future landslides, and to improve our collective understanding of the evolution of landscapes dominated by mass-wasting processes under geophysical and weather triggers.</p>

2020 ◽  
Vol 10 (22) ◽  
pp. 7960
Author(s):  
Federica Cotecchia ◽  
Francesca Santaloia ◽  
Vito Tagarelli

Nowadays, landslides still cause both deaths and heavy economic losses around the world, despite the development of risk mitigation measures, which are often not effective; this is mainly due to the lack of proper analyses of landslide mechanisms. As such, in order to achieve a decisive advancement for sustainable landslide risk management, our knowledge of the processes that generate landslide phenomena has to be broadened. This is possible only through a multidisciplinary analysis that covers the complexity of landslide mechanisms that is a fundamental part of the design of the mitigation measure. As such, this contribution applies the “stage-wise” methodology, which allows for geo-hydro-mechanical (GHM) interpretations of landslide processes, highlighting the importance of the synergy between geological-geomorphological analysis and hydro-mechanical modeling of the slope processes for successful interpretations of slope instability, the identification of the causes and the prediction of the evolution of the process over time. Two case studies are reported, showing how to apply GHM analyses of landslide mechanisms. After presenting the background methodology, this contribution proposes a research project aimed at the GHM characterization of landslides, soliciting the support of engineers in the selection of the most sustainable and effective mitigation strategies for different classes of landslides. This proposal is made on the assumption that only GHM classification of landslides can provide engineers with guidelines about instability processes which would be useful for the implementation of sustainable and effective landslide risk mitigation strategies.


2019 ◽  
Vol 11 (21) ◽  
pp. 6130 ◽  
Author(s):  
Ellen Felizardo Batista ◽  
Larissa De Brum Passini ◽  
Alessander Christopher Morales Kormann

Landslides are one of the main causes of death caused by disasters in the world. In this study, methodologies to measure landslide costs and to assess vulnerability are presented, with the objective of applying them to landslide risk analyses. The methodologies were applied in a region of Serra do Mar, which is crossed by a highway. The analyses and mappings were implemented in a Geographic Information System (GIS). Through the application of the methodology that considers both direct and indirect costs in the composition of total cost, it was established how much an m2 of a landslide would cost. The composition of direct costs encompassed the damages related to restoration or construction of the highways, infrastructures, unpaved roads, residential and commercial buildings, vegetal cover and agricultural areas. In indirect costs, the economic losses by victims, highway interdiction, and agricultural area profitability were calculated. In the methodology for vulnerability assessment, bodily injuries, structural damages, and functional disturbances resulted from landslides were analyzed. The risk assessment was performed through the junction of the maps of total cost, vulnerability and susceptibility. The results indicate that indirect costs were predominant in cost composition, corresponding to 87% of total costs, in comparison to 13% of the direct costs, stressing the importance of considering indirect costs in economic measurement studies. As a result, it is possible to conclude that studying landslide consequences as economic parameters supports the increasing need of performing risk quantitative analyses. It is also prudent to add that these studies help decision makers in projects of disaster risk mitigation strategies, by allowing the identification of regions with greater economic impacts in case of landslide occurrence.


2015 ◽  
Vol 3 (9) ◽  
pp. 5547-5597 ◽  
Author(s):  
C. Guillard-Gonçalves ◽  
J. L. Zêzere ◽  
S. Pereira ◽  
R. A. C. Garcia

Abstract. This study offers a semi-quantitative assessment of the physical vulnerability of buildings to landslides in the Loures municipality, as well as an analysis of the landslide risk computed as the product of the vulnerability by the economic value of the buildings and by the landslide hazard. The physical vulnerability assessment, which was based on a questionnaire sent to a pool of Portuguese and European researchers, and the assessment of the subjectivity of their answers are innovative contributions of this work. The generalization of the vulnerability to the smallest statistical subsection was validated by changing the map unit and applying the vulnerability to all the buildings of a test site (approximately 800 buildings), which were inventoried during fieldwork. The economic value of the buildings of the Loures municipality was calculated using an adaptation of the Portuguese Tax Services formula. The hazard was assessed by combining the susceptibility of the slopes, the spatio-temporal probability and the frequency-magnitude relationship of the landslide. Finally, the risk was mapped for different landslide magnitudes and different spatio-temporal probabilities. The highest landslide risk was found for the landslide with a depth of 3 m in the landslide body, and a height of 1m in the landslide foot.


2020 ◽  
Author(s):  
George Karagiannakis

This paper deals with state of the art risk and resilience calculations for industrial plants. Resilience is a top priority issue on the agenda of societies due to climate change and the all-time demand for human life safety and financial robustness. Industrial plants are highly complex systems containing a considerable number of equipment such as steel storage tanks, pipe rack-piping systems, and other installations. Loss Of Containment (LOC) scenarios triggered by past earthquakes due to failure on critical components were followed by severe repercussions on the community, long recovery times and great economic losses. Hence, facility planners and emergency managers should be aware of possible seismic damages and should have already established recovery plans to maximize the resilience and minimize the losses. Seismic risk assessment is the first step of resilience calculations, as it establishes possible damage scenarios. In order to have an accurate risk analysis, the plant equipment vulnerability must be assessed; this is made feasible either from fragility databases in the literature that refer to customized equipment or through numerical calculations. Two different approaches to fragility assessment will be discussed in this paper: (i) code-based Fragility Curves (FCs); and (ii) fragility curves based on numerical models. A carbon black process plant is used as a case study in order to display the influence of various fragility curve realizations taking their effects on risk and resilience calculations into account. Additionally, a new way of representing the total resilience of industrial installations is proposed. More precisely, all possible scenarios will be endowed with their weighted recovery curves (according to their probability of occurrence) and summed together. The result is a concise graph that can help stakeholders to identify critical plant equipment and make decisions on seismic mitigation strategies for plant safety and efficiency. Finally, possible mitigation strategies, like structural health monitoring and metamaterial-based seismic shields are addressed, in order to show how future developments may enhance plant resilience. The work presented hereafter represents a highly condensed application of the research done during the XP-RESILIENCE project, while more detailed information is available on the project website https://r.unitn.it/en/dicam/xp-resilience.


2020 ◽  
Vol 30 (12) ◽  
pp. 1963-1984
Author(s):  
Zhiming Feng ◽  
Chiwei Xiao ◽  
Peng Li ◽  
Zhen You ◽  
Xu Yin ◽  
...  

2011 ◽  
Vol 16 (2) ◽  
pp. 177-198 ◽  
Author(s):  
KARL PAUW ◽  
JAMES THURLOW ◽  
MURTHY BACHU ◽  
DIRK ERNST VAN SEVENTER

ABSTRACTExtreme weather events such as droughts and floods have potentially damaging implications for developing countries. Previous studies have estimated economic losses during hypothetical or single historical events, and have relied on historical production data rather than explicitly modeling climate. However, effective mitigation strategies require knowledge of the full distribution of weather events and their isolated effects on economic outcomes. We combine stochastic hydrometeorological crop-loss models with a regionalized computable general equilibrium model to estimate losses for the full distribution of possible weather events in Malawi. Results indicate that, based on repeated sampling from historical events, at least 1.7 per cent of Malawi's gross domestic product (GDP) is lost each year due to the combined effects of droughts and floods. Smaller-scale farmers in the southern region of the country are worst affected. However, poverty among urban and nonfarm households also increases due to national food shortages and higher domestic prices.


2012 ◽  
Vol 246-247 ◽  
pp. 744-748
Author(s):  
Yue Lin Sun ◽  
Lei Bao ◽  
Yi Hang Peng

An effective analysis of the battlefield situation and spatio-temporal data model in a sea battlefield has great significance for the commander to perceive the battlefield situation and to make the right decisions. Based on the existing spatio-temporal data model, the present paper gives a comprehensive analysis of the characteristics of sea battlefield data, and chooses the object-oriented spatio-temporal data model to modify it; at the same time this paper introduces sea battlefield space-time algebra system to define various data types formally, which lays the foundation for the establishment of the sea battlefield spatio-temporal data model.


2021 ◽  
Vol 13 (3) ◽  
pp. 1318
Author(s):  
Gurdeep Singh Malhi ◽  
Manpreet Kaur ◽  
Prashant Kaushik

Climate change is a global threat to the food and nutritional security of the world. As greenhouse-gas emissions in the atmosphere are increasing, the temperature is also rising due to the greenhouse effect. The average global temperature is increasing continuously and is predicted to rise by 2 °C until 2100, which would cause substantial economic losses at the global level. The concentration of CO2, which accounts for a major proportion of greenhouse gases, is increasing at an alarming rate, and has led to higher growth and plant productivity due to increased photosynthesis, but increased temperature offsets this effect as it leads to increased crop respiration rate and evapotranspiration, higher pest infestation, a shift in weed flora, and reduced crop duration. Climate change also affects the microbial population and their enzymatic activities in soil. This paper reviews the information collected through the literature regarding the issue of climate change, its possible causes, its projection in the near future, its impact on the agriculture sector as an influence on physiological and metabolic activities of plants, and its potential and reported implications for growth and plant productivity, pest infestation, and mitigation strategies and their economic impact.


Sign in / Sign up

Export Citation Format

Share Document