The impact of land use change, climate change and reservoir construction on ecosystem services in a Mediterranean catchment

Author(s):  
Joris Eekhout ◽  
Carolina Boix-Fayos ◽  
Pedro Pérez-Cutillas ◽  
Joris de Vente

<p>The Mediterranean region has been identified as one of the most affected global hot-spots for climate change. Recent climate change in the Mediterranean can be characterized by faster increasing temperatures than the global mean and significant decreases in annual precipitation. Besides, important land cover changes have occurred, such as reforestation, agricultural intensification, urban expansion and the construction of many reservoirs, mainly with the purpose to store water for irrigation. Here we study the impacts of these changes on several ecosystem services in the Segura River catchment, a typical large Mediterranean catchment where many of the before mentioned changes have occurred in the last half century. We applied a hydrological model, coupled with a soil erosion and sediment transport model, to study the impact of climate and land cover change and reservoir construction on ecosystem services for the period 1971-2010. Eight ecosystem services indicators were defined, which include runoff, plant water stress, hillslope erosion, reservoir sediment yield, sediment concentration, reservoir storage, flood discharge and low flow. To assess larger land use changes, we also applied the model for an extended period (1952-2018) to the Taibilla subcatchment, a typical Mediterranean mountainous subcatchment, which plays an important role in the provision of water within the Segura River catchment. As main results we observed that climate change in the evaluated period is characterized by a decrease in precipitation and an increase in temperature. Detected land use change over the past 50 years is typical for many Mediterranean catchments. Natural vegetation in the headwaters increased due to agricultural land abandonment. Agriculture expanded in the central part of the catchment, which most likely is related to the construction of reservoirs in the same area. The downstream part of the catchment is characterized by urban expansion. While land use changed in more than 30% of the catchment, most impact on ecosystem services can be attributed to climate change and reservoir construction. All these changes have had positive and negative impacts on ecosystem services. The positive impacts include a decrease in hillslope erosion, sediment yield, sediment concentration and flood discharge (-21%, -18%, -82% and -41%, respectively). The negative impacts include an increase in plant water stress (+5%) and a decrease in reservoir storage (-5%). The decrease in low flow caused by land use change was counteracted by an increase in low flow due to reservoir construction. The results of our study highlight how relatively small climate and land use changes compared to the changes foreseen for the coming decades, have had an important impact on ecosystem services over the past 50 years.</p>

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Pengyan Zhang ◽  
Yanyan Li ◽  
Wenlong Jing ◽  
Dan Yang ◽  
Yu Zhang ◽  
...  

Urbanization is causing profound changes in ecosystem functions at local and regional scales. The net primary productivity (NPP) is an important indicator of global change, rapid urbanization and climate change will have a significant impact on NPP, and urban expansion and climate change in different regions have different impacts on NPP, especially in densely populated areas. However, to date, efforts to quantify urban expansion and climate change have been limited, and the impact of long-term continuous changes in NPP has not been well understood. Based on land use data, night light data, NPP data, climate data, and a series of social and economic data, we performed a comprehensive analysis of land use change in terms of type and intensity and explored the pattern of urban expansion and its relationship with NPP and climate change for the period of 2000–2015, taking Zhengzhou, China, as an example. The results show that the major form of land use change was cropland to built-up land during the 2000–2015 period, with a total area of 367.51 km2 converted. The NPP exhibited a generally increasing trend in the study area except for built-up land and water area. The average correlation coefficients between temperature and NPP and precipitation and NPP were 0.267 and 0.020, respectively, indicating that an increase in temperature and precipitation can promote NPP despite significant spatial differences. During the examined period, most expansion areas exhibited an increasing NPP trend, indicating that the influence of urban expansion on NPP is mainly characterized by an evident influence of the expansion area. The study can provide a reference for Zhengzhou and even the world's practical research to improve land use efficiency, increase agricultural productivity and natural carbon sinks, and maintain low-carbon development.


Author(s):  
J. S. Wu ◽  
Y. P. Li ◽  
J. Sun ◽  
P. P. Gao ◽  
G. H. Huang ◽  
...  

Abstract A multiple scenario-based ensemble prediction (MSEP) method is developed for exploring the impacts of climate and land-use changes on runoff in the Naryn River Basin. MSEP incorporates multiple global climate models, Cellular Automata–Markov and Soil and Water Assessment Tool (SWAT) within a general framework. MSEP can simultaneously analyze the effects of climate and land-use changes on runoff, as well as provide multiple climate and land-use scenarios to reflect the associated uncertainties in runoff simulation and prediction. Totally 96 scenarios are considered to analyze the trend and range of future runoff. Ensemble prediction results reveal that (i) climate change plays a leading role in runoff variation; (ii) compared to the baseline values, peak flow would increase 36.6% and low flow would reduce 36.8% by the 2080s, which would result in flooding and drought risks in the future and (iii) every additional hectare of arable land would increase the water deficit by an average of 10.9 × 103 m3, implying that the arable land should be carefully expanded in the future. Results suggest that, to mitigate the impact of climate change, the rational control of arable land and the active promotion of irrigation efficiency are beneficial for water resources management and ecological environmental recovery.


2020 ◽  
Author(s):  
Inês Amorim Leitão ◽  
Carla Sofia Santos Ferreira ◽  
António José Dinis Ferreira

<p>Land-use changes affect the properties of ecosystems, and are typically associated with decreasing ability to supply services, which in turn causes a decrease in the social well-being. Urbanization is identified as one of the main causes of ecosystem degradation, once it is considered an artificial space that replaces natural areas.This study investigates the impact of land-use changes during 20 years (1995-2015) on the potential supply of ecosystem services in Coimbra municipality, central Portugal. The assessment was based on the evaluation performed by 31 experts familiar with the study area, through questionnaires. The experts ranked the potential supply of 31 ecosystem services, grouped in regulation, provisioning and cultural services, for the several land-uses existent. Experts performed a qualitative evaluation, considering ‘strong adverse potential’, ‘weak adverse potential’, ‘not relevant’, ‘low positive potential’ and ‘strong positive potential’. The qualitative evaluation was converted into a quantitative classification (-2, -1, 0, 1, 2). Quantitative values were then used to develop an ecosystem services quantification matrix and to map the information in the study area, using Geographic Information Systems (GIS). An urban expansion from 14% to 18% was recorded over the last 20 years. Agricultural land decreased 8% due to conversion into forest (4% increase) and urban areas (4% increase). This has led to a decrease in the supply of provision (e.g. food) and regulation services (e.g. flood regulation). In fact, over the last years, recurrent floods have been increasingly noticed in Coimbra city. On the other hand, the growth of forest areas has led to an increase in general ESs supply. The adverse impacts of urbanization were partially compensated by enlarging the benefits provided by forest areas, which is the land-use with greatest ESs potential supply. In order to support urban planning and develop sustainable cities, it is essential to quantify the potential supply of ecosystem services considering local scale and characteristics.</p>


2020 ◽  
Vol 165 ◽  
pp. 02024
Author(s):  
Min Liu ◽  
Shimin Wen ◽  
Chuanjiang Zhang

In order to evaluate the impact of land use change on ecosystem service value in Dujiangyan City, through equivalent factor method, qualitative and quantitative analysis is carried out on the dynamic change of land use change and its caused ecosystem service value in Dujiangyan City from 2010 to 2016. The results show that: (1) Dujiangyan city land use changes a large extent, with the extension of construction land expansion as the main increase part, and at the cost of the reduction of arable land and grassland area. (2) Over the past 7 years, the total value of ecosystem services in Dujiangyan city followed a law of first rising and then falling, showing an overall rising trend, with a total increase of 19.2244 million yuan. (3) The accuracy of the ecological value coefficient of woodland and grassland will greatly affect the value assessment of ecosystem services in Dujiangyan city. (4) From the relationship between land use type and ecosystem service value, cultivated land and construction land are negatively correlated with ecosystem service value, on the contrary, forest land, grassland, water area and construction land are positively correlated with ecosystem service value. In general, the land use of Dujiangyan City did not cause obvious damage to the ecological environment, but also cannot ignore the impact of land use changes on the environment in the process of economic development. It is necessary to control the growth of construction land area, promote the conservation and rational development of Eco-tourism area in Dujiangyan City, maintain the stability of ecosystem services in Dujiangyan City, and realize the strategy of sustainable development of Social-Economic-Ecological benefits.


2020 ◽  
Author(s):  
Bence Decsi ◽  
Zsolt Kozma

<p>As a result of climate change, improving the efficiency of our water management has become a key social goal in recent decades. In many regions, water management problems are becoming more common as the result of hydrologic extremes, such as water scarcity, drought or floods.</p><p>Countries and regions dealing with water problems, like some parts of Hungary, could avoid major damage by land use change. The possibility of land use change is obviously not an option in certain instances, especially in populated areas or areas with major infrastructure (roads, railways, airports, factories, etc.). At the same time, non-populated areas (primarily agricultural land) may be transformed in the future, in the hope of better water management.</p><p>Complex, multi-dimensional assessment of ecosystem services can be a step forward in the evaluation and planning of future land use changes with the aim of improving water resources management. The strength of this approach is multi-disciplinarity, which requires the collaboration of representatives of the technical, economic, social and ecological sciences.</p><p>In our study, we quantified and mapped the most important water resources related indicators and services of the Zala River basin in Western Hungary. Zala River is the largest sub-catchment of Lake Balaton, Central-Europe’s largest standing water. The lake has great economic and social importance in Hungary, primarily due to its recreational and cultural services, so it is necessary to have sufficient quantity and quality of water.  The catchment area is 1521 km<sup>2</sup>, land use conditions are dominated by agricultural and forest areas (around 57% and 37% respectively).</p><p>For the quantification of ecosystem services indicators, we used the GIS based, static model package InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs). InVEST is suggested to describe the socio-ecological state of several services, under various periods or land use conditions. The strength of the model lies in its solid data requirements and low computational demand. In our work, we mapped the following services and indicators: annual water yield, seasonal water yield, quickflow, nutrient retention, sediment retention and agricultural crop yields.</p><p>We examined the impact of different interventions on the ecosystem services. We intervened primarily in areas where agricultural land use is not justified due to different environmental conditions. In these areas, we analyzed the introduction of natural surfaces with afforestation and meadows. We built up a reference (based on a novel LULC map representing actual conditions) and some fictive model variants. These model variants differed in the amount and location of the new semi-natural areas. The variants were compared for two temporal periods: 1980-2010 and 2020-2050 (based on climate models).</p><p>We quantified the tradeoffs as a result of a given land use change. As expected, the future negative effects of climate change could be mitigated by increasing semi-natural areas. All ecosystem services would improve except for crop yields. At the same time, however, farmers would be deprived of significant yields in areas, which are excluded from agriculture. Our research highlights that the positive effects or tradeoffs due to land-use change will be needed in the future.</p>


2019 ◽  
Vol 11 (17) ◽  
pp. 4654
Author(s):  
Marcela Prokopová ◽  
Luca Salvati ◽  
Gianluca Egidi ◽  
Ondřej Cudlín ◽  
Renata Včeláková ◽  
...  

Climate change plays an important role in shaping ecological stability of landscape systems. Increasing weather fluctuations such as droughts threaten the ecological stability of natural and anthropogenic landscapes. Uncertainty exists regarding the validity of traditional landscape assessment schemes under climate change. This commentary debates the main factors that threaten ecological stability, discussing basic approaches to interpret landscape functioning. To address this pivotal issue, the intimate linkage between ecological stability and landscape diversity is explored, considering different approaches to landscape stability assessment. The impact of land-use changes on landscape stability is finally discussed. Assessment methodologies and indicators are reviewed and grouped into homogeneous classes based on a specific nomenclature of stability aspects which include landscape composition, fragmentation and connectivity, thermodynamic and functional issues, biodiversity, soil degradation, and ecological disturbance. By considering land-use change as one of the most important factors underlying climate change, individual components of landscape stability are finally delineated and commented upon. In this regard, specific trajectories of land-use change (including agricultural intensification, land abandonment, and urbanization) are investigated for their effects on ecological stability. A better understanding of land-use impacts on landscape stability is crucial for a better knowledge of processes leading to land degradation.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Susanne Rolinski ◽  
Alexander V. Prishchepov ◽  
Georg Guggenberger ◽  
Norbert Bischoff ◽  
Irina Kurganova ◽  
...  

AbstractChanges in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6⋅ 1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (± 1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (± 0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (± 1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.


2021 ◽  
Author(s):  
Peter H. Verburg ◽  
Žiga Malek ◽  
Sean P. Goodwin ◽  
Cecilia Zagaria

The Conversion of Land Use and its Effects modeling framework (CLUE) was developed to simulate land use change using empirically quantified relations between land use and its driving factors in combination with dynamic modeling of competition between land use types. Being one of the most widely used spatial land use models, CLUE has been applied all over the world on different scales. In this document, we demonstrate how the model can be used to develop a multi-regional application. This means, that instead of developing numerous individual models, the user only prepares one CLUE model application, which then allocates land use change across different regions. This facilitates integration with the Integrated Economic-Environmental Modeling (IEEM) Platform for subnational assessments and increases the efficiency of the IEEM and Ecosystem Services Modeling (IEEMESM) workflow. Multi-regional modelling is particularly useful in larger and diverse countries, where we can expect different spatial distributions in land use changes in different regions: regions of different levels of achieved socio-economic development, regions with different topographies (flat vs. mountainous), or different climatic regions (dry vs humid) within a same country. Accounting for such regional differences also facilitates developing ecosystem services models that consider region specific biophysical characteristics. This manual, and the data that is provided with it, demonstrates multi-regional land use change modeling using the country of Colombia as an example. The user will learn how to prepare the data for the model application, and how the multi-regional run differs from a single-region simulation.


Sign in / Sign up

Export Citation Format

Share Document