A Conceptual Framework for Modelling the Climate Change and its Impacts within a River Basin using Remote Sensing data

Author(s):  
Sathyaseelan Mayilvahanam ◽  
Sanjay Kumar Ghosh ◽  
Chandra Shekhar Prasad Ojha

<p><strong>Abstract</strong></p> <p>In general, modelling the climate change and its impacts within a hydrological unit brings out an understanding of the system and, its behaviour with various model constrains. The climate change and global warming studies are being under research and development phase, because of its complex and dynamic nature. The IPCC 5<sup>th</sup> Assessment Report on global warming states that in the 21<sup>st</sup> century, there may be an increase in temperature of the order of ~1.5°C. This transient climate may cause significant impacts or any discrepancies in the water availability of the hydrological unit. This may lead to severe impacts in countries with high population such as India, China, etc., The Remote sensing datasets play an essential role in modelling the climatic changes for a river basin at different spatial and temporal scales. This study aims to propose a conceptual framework for the above-defined problem with emphasising on remote sensing datasets. This framework involves five entities such as the data component, process component,  impact component,  feedback component and, uncertainty component. The framework flow begins with the data component entity that involves two significant inputs, such as the hydro-meteorological data and the land-hydrology data. The essential attributes of the hydro-meteorological data entities are the precipitation, temperature, relative humidity, wind speed and solar radiation. These datasets may be obtained and analysed from empirical or statistical methods, in-situ based or satellite-based methods, respectively. These mathematical models on long-run historical climate data may provide knowledge on climate change detections or its trends. The meteorological data derived from the satellites may have a measurable bias with that of the in situ data. The satellite-based land-hydrology data component involves various attributes such as topography, soil, vegetation, water bodies, other land use / land cover, soil moisture, evapotranspiration. The process component involves complex land-hydrology processes that may be well established and modelled by customizable hydrological models. Here, we may emphasise the use of remote-sensing based model parameter values in the equations either directly or indirectly. Also, the land-atmospheric process component involves various complex processes that may take place in this zone. These processes may be well established and solved by customizable atmospheric weather models. The land components play a significant role in modelling the climate changes, because these land processes may trigger global warming by various anthropogenic agents. The main objective of this framework is to emphasise the climate change impacts using remote sensing. Hence, the impact component entity plays an essential role in this conceptual framework. The climate change impact within a river basin at various spatial and temporal scales are identified using different hydrological responses. The feedback entity is the most sensitive part of this framework, because it may alter the climate forcing either positive or negative. An uncertainty model component handles the uncertainty in the model framework. The highlight of this conceptual framework is to use the remote sensing datasets in climate change studies. The limitations on the correctness of the remote sensing data with the insitu data at every location is not feasible.</p>

2021 ◽  
Vol 13 (19) ◽  
pp. 3845
Author(s):  
Guangbo Ren ◽  
Jianbu Wang ◽  
Yunfei Lu ◽  
Peiqiang Wu ◽  
Xiaoqing Lu ◽  
...  

Climate change has profoundly affected global ecological security. The most vulnerable region on Earth is the high-latitude Arctic. Identifying the changes in vegetation coverage and glaciers in high-latitude Arctic coastal regions is important for understanding the process and impact of global climate change. Ny-Ålesund, the northern-most human settlement, is typical of these coastal regions and was used as a study site. Vegetation and glacier changes over the past 35 years were studied using time series remote sensing data from Landsat 5/7/8 acquired in 1985, 1989, 2000, 2011, 2015 and 2019. Site survey data in 2019, a digital elevation model from 2009 and meteorological data observed from 1985 to 2019 were also used. The vegetation in the Ny-Ålesund coastal zone showed a trend of declining and then increasing, with a breaking point in 2000. However, the area of vegetation with coverage greater than 30% increased over the whole study period, and the wetland moss area also increased, which may be caused by the accelerated melting of glaciers. Human activities were responsible for the decline in vegetation cover around Ny-Ålesund owing to the construction of the town and airport. Even in areas with vegetation coverage of only 13%, there were at least five species of high-latitude plants. The melting rate of five major glaciers in the study area accelerated, and approximately 82% of the reduction in glacier area occurred after 2000. The elevation of the lowest boundary of the five glaciers increased by 50–70 m. The increase in precipitation and the average annual temperature after 2000 explains the changes in both vegetation coverage and glaciers in the study period.


2013 ◽  
pp. 815-831
Author(s):  
Nitin Kumar Tripathi ◽  
Aung Phey Khant

Biodiversity conservation is a challenging task due to ever growing impact of global warming and climate change. The chapter discusses various aspects of biodiversity parameters that can be estimated using remote sensing data. Moderate resolution satellite (MODIS) data was used to demonstrate the biodiversity characterization of Ecoregion 29. Forest type map linked to density of the study area was also developed by MODIS data. The outcome states that remote sensing and geographic information systems can be used in combination to derive various parameters related to biodiversity surveillance at a regional scale.


2020 ◽  
Vol 12 (12) ◽  
pp. 1951 ◽  
Author(s):  
Til Prasad Pangali Sharma ◽  
Jiahua Zhang ◽  
Narendra Raj Khanal ◽  
Foyez Ahmed Prodhan ◽  
Basanta Paudel ◽  
...  

The Himalayan region, a major source of fresh water, is recognized as a water tower of the world. Many perennial rivers originate from Nepal Himalaya, located in the central part of the Himalayan region. Snowmelt water is essential freshwater for living, whereas it poses flood disaster potential, which is a major challenge for sustainable development. Climate change also largely affects snowmelt hydrology. Therefore, river discharge measurement requires crucial attention in the face of climate change, particularly in the Himalayan region. The snowmelt runoff model (SRM) is a frequently used method to measure river discharge in snow-fed mountain river basins. This study attempts to investigate snowmelt contribution in the overall discharge of the Budhi Gandaki River Basin (BGRB) using satellite remote sensing data products through the application of the SRM model. The model outputs were validated based on station measured river discharge data. The results show that SRM performed well in the study basin with a coefficient of determination (R2) >0.880. Moreover, this study found that the moderate resolution imaging spectroradiometer (MODIS) snow cover data and European Centre for Medium-Range Weather Forecasts (ECMWF) meteorological datasets are highly applicable to the SRM in the Himalayan region. The study also shows that snow days have slightly decreased in the last three years, hence snowmelt contribution in overall discharge has decreased slightly in the study area. Finally, this study concludes that MOD10A2 and ECMWF precipitation and two-meter temperature products are highly applicable to measure snowmelt and associated discharge through SRM in the BGRB. Moreover, it also helps with proper freshwater planning, efficient use of winter water flow, and mitigating and preventive measures for the flood disaster.


Author(s):  
Nitin Kumar Tripathi ◽  
Aung Phey Khant

Biodiversity conservation is a challenging task due to ever growing impact of global warming and climate change. The chapter discusses various aspects of biodiversity parameters that can be estimated using remote sensing data. Moderate resolution satellite (MODIS) data was used to demonstrate the biodiversity characterization of Ecoregion 29. Forest type map linked to density of the study area was also developed by MODIS data. The outcome states that remote sensing and geographic information systems can be used in combination to derive various parameters related to biodiversity surveillance at a regional scale.


2020 ◽  
Vol 29 (1) ◽  
pp. 102-110 ◽  
Author(s):  
Vadym I. Lyalko ◽  
Inna F. Romanciuc ◽  
Lesia A. Yelistratova ◽  
Aleksandr A. Apostolov ◽  
Viktor M. Chekhniy

In recent years, Ukraine has been affected by climate change. This has led to frequent extreme weather events (heavy / high rains, floods, droughts, squalls). As a result of droughts, desertification is one of the most dangerous and transient consequences of modern climate change. The research is devoted to the diagnostic assessment of the modern climate of Ukraine. Remote sensing data and instrumental observations of 30 weather stations of Ukraine were used. Temperature increase was registered in the study area by all stations, which significantly affected the level of precipitation. At the moment there is not enough moisture for the Earth’s surface. Precipitation in Ukraine is currently characterized by an uneven distribution. It leads to accelerated processes of soil degradation and it’s fertility loss. The aim of the study was to identify areas prone to desertification using satellite imagery and meteorological observations. Over the past 17 years (2000-2017), the average air temperature in Ukraine has increased by 1.5 ºC. Particularly anomalous warming has been recorded in recent years, starting in 2015. During the XXI century, a slight decrease in precipitation was observed in Ukraine. Both a decrease in precipitation and an increase in temperature may lead to a decrease in soil moisture levels. According to ground meteorological data, the tendency of dryness in Ukraine was confirmed. Lack of water leads to prompt manifestation of this process. Water indexes were used to estimate the moisture content of surface soils. It is possible to assess the susceptibility of the desert area to climate change. Relevant quantitative information on water availability in Ukraine is provided. Two water indices (Normalized Difference Infrared Index NDII and Ratio Drought Index RDI) have been taken estimate the moisture content. It can be estimated from the MODIS MOD13C2 product data obtained from the MODIS satellite sensor and used for regional research. The main conclusion of this study is to determine the changes in natural terrestrial ecosystems in Ukraine. This was shown on the basis of temperature and humidity. Such trends may lead to changes in the biodiversity of the territory and loss of natural soil properties.


2021 ◽  
Vol 13 (10) ◽  
pp. 2014
Author(s):  
Celina Aznarez ◽  
Patricia Jimeno-Sáez ◽  
Adrián López-Ballesteros ◽  
Juan Pablo Pacheco ◽  
Javier Senent-Aparicio

Assessing how climate change will affect hydrological ecosystem services (HES) provision is necessary for long-term planning and requires local comprehensive climate information. In this study, we used SWAT to evaluate the impacts on four HES, natural hazard protection, erosion control regulation and water supply and flow regulation for the Laguna del Sauce catchment in Uruguay. We used downscaled CMIP-5 global climate models for Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5 projections. We calibrated and validated our SWAT model for the periods 2005–2009 and 2010–2013 based on remote sensed ET data. Monthly NSE and R2 values for calibration and validation were 0.74, 0.64 and 0.79, 0.84, respectively. Our results suggest that climate change will likely negatively affect the water resources of the Laguna del Sauce catchment, especially in the RCP 8.5 scenario. In all RCP scenarios, the catchment is likely to experience a wetting trend, higher temperatures, seasonality shifts and an increase in extreme precipitation events, particularly in frequency and magnitude. This will likely affect water quality provision through runoff and sediment yield inputs, reducing the erosion control HES and likely aggravating eutrophication. Although the amount of water will increase, changes to the hydrological cycle might jeopardize the stability of freshwater supplies and HES on which many people in the south-eastern region of Uruguay depend. Despite streamflow monitoring capacities need to be enhanced to reduce the uncertainty of model results, our findings provide valuable insights for water resources planning in the study area. Hence, water management and monitoring capacities need to be enhanced to reduce the potential negative climate change impacts on HES. The methodological approach presented here, based on satellite ET data can be replicated and adapted to any other place in the world since we employed open-access software and remote sensing data for all the phases of hydrological modelling and HES provision assessment.


2012 ◽  
Vol 34 (9-10) ◽  
pp. 3699-3715 ◽  
Author(s):  
Guillermo Villa ◽  
José Moreno ◽  
Alfonso Calera ◽  
Julia Amorós-López ◽  
Gustavo Camps-Valls ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document