Pore structure of different biochars and their impacts on physical properties of Sphagnum moss growing media

Author(s):  
Mika Turunen

<p>Suitability of organic materials as growing media in plant production is dependent on physical properties of the media. Undecomposed Sphagnum moss growing media is an innovative and potentially more sustainable alternative to the commonly used peat-based media. However, the physical properties of the moss media are not comprehensively understood. Furthermore, amending the growing media with biochar has the potential to sequester carbon and enhance the properties of the receiving substance, but biochar impacts on organic growing media properties remain unknown.</p><p>This study aimed to (1) quantify differences in water retention, aeration and pore structure properties of three different low- or non-humified Sphagnum-based growing media with 3D X-ray imaging and conventional physical measurements, (2) determine impacts of intense drying-wetting cycles on their pore structure. Furthermore, we aimed to (3) quantify the 3D pore structure of three different plant-based biochars and (4) demonstrate their impact on moss growing media physical properties.</p><p>The drying of the media occurred in three distinct phases with (1) large changes in the air-filled porosity in the suction range 0.2-3.2 kPa, (2) clearly smaller changes in 3.2-312 kPa and (3) again large changes in 312-1585 kPa. In the phases 2 and 3, the aeration of the media was satisfactory for plant growth, but the amount of easily available water was low. This sets challenges for the suitability of the materials in conditions without regular irrigation. These properties of the moss media were comparable to the peat media. The pore structure of the media was not sensitive to drying-wetting cycles, but the pore size distributions was observed to shift slightly towards smaller pore size classes with increasing decomposition degree and stress impact of the drying-wetting cycles.</p><p>Regarding biochar physical properties, the 3D imaging results demonstrated that irrespective of the feedstock, the major share (0.80-0.94 m<sup>3 </sup>m<sup>-3</sup>) of the biochar pore volume resided in pores with diameters 2-11 µm. Biochar pore properties reflected plant tissue structure of the raw materials. The application of biochar increased the water retention of the growing media in the pore diameter range 1-8 µm. The maximum increase was 0.06 m<sup>3 </sup>m<sup>-3</sup>. This is relevant for plant-available water, which indicates the usability of the biochar amendments.</p><p>From methodological point of view, the value of combining 3D imaging with conventional measurements was shown. The approach revealed how water table continuum between biochar and surrounding growing media affect availability of water stored inside the biochar particles.  The results are based on a recently published article (Turunen et al. 2019) and an accepted manuscript (Turunen et al. 2020).</p><p> </p><p>References:</p><p>Turunen, M., Hyväluoma, J., Heikkinen, J., Keskinen, R., Kaseva, J., Koestel, J. and Rasa, K., 2019. Quantifying Physical Properties of Three Sphagnum-Based Growing Media as Affected by Drying–Wetting Cycles. Vadose Zone Journal, 18:190033. doi:10.2136/vzj2019.04.0033</p><p>Turunen, M., Hyväluoma, J., Heikkinen, J., Keskinen, R., Kaseva, J., Hannula, M. and Rasa, K., 2020. Quantifying the pore structure of different biochars and their impacts on the water retention properties of Sphagnum moss growing media. Accepted for publication (Biosystems Engineering).</p><p> </p>

2020 ◽  
Vol 191 ◽  
pp. 96-106 ◽  
Author(s):  
Mika Turunen ◽  
Jari Hyväluoma ◽  
Jaakko Heikkinen ◽  
Riikka Keskinen ◽  
Janne Kaseva ◽  
...  

1987 ◽  
Vol 17 (2) ◽  
pp. 165-173 ◽  
Author(s):  
Tanya L. Lennox ◽  
Glen P. Lumis

Several personally blended and commercially prepared growing media were evaluated as potential substrates for coniferous tree seedlings in specialized seeding containers (aerial darts). Water retention curves were developed using a porous pressure plate apparatus. Bark–vermiculite–sand and Ball Growing Mix II retained less water at pressures from 0 to 0.1 MPa than all other media observed. At pressures less than 20 × 10−3 MPa the greatest water retention was in Pro-mix A, while above 33 × 10−3 MPa the greatest water retention was in bark–vermiculite. As the proportion of bark in bark–vermiculite was increased, the air space increased significantly but water retention was unaffected. Addition of a hydrophilic gel to media containing a surfactant significantly increased water retention. The easily available water, water buffering capacity, and air space were unaffected by gel but total porosity increased in some of the media. When the surfactant was excluded the addition of gel at the recommended rate did not significantly increase water retention. As the concentration of gel increased there was an increase in water retention, a linear increase in total porosity, a slight increase in air space, a decrease in easily available water, and no change in water buffering capacity. Media amended with gels of different absorbing capacities retained water similarly, releasing approximately 50% of the absorbed water at pressures less than 10 × 10−3 MPa.


Soil Research ◽  
1978 ◽  
Vol 16 (3) ◽  
pp. 277
Author(s):  
MH Khoury ◽  
AH Sayegh ◽  
NJ Atallah

The application of soil conditioners on a calcareous soil resulted in an increase in the diameter of pores and a decrease in the available water. A diameter of 140 �m was suggested to be the dividing point between micropores and very fine pores.


2019 ◽  
Vol 52 (1) ◽  
pp. 43
Author(s):  
Omid Bahmani

<p><strong> </strong>Tillage is one of the most important practices that have a significant influence on the soil hydro-physical properties. In this study, the impact of the type and number of input variables with five different methods of the Retc model to predicting the moisture retention curve and soil water content in three surfaces tillage NT (No-tillage), CP (Chisel Plough) and MP (Moldboard Plough) and the impact of tillage systems on soil hydro-physical properties were evaluated. According to results, when the field capacity and wilting point moisture was added to input data in Retc to predict the moisture curve model parameters, the EF was increased in MP (0.977, 0.95) and CP (0.891, 0.86) treatments compare the NT (0.665, 0.608). The Mualem–Van Genuchten model can describe satisfactorily the simulation of soil physical properties. The S-index, which was also affected by tillage, was greater than 0.066 in all tillage treatments, indicating good soil physical quality. Results indicated that NT had the highest and lowest values of bulk density (1.55 Mgr.m<sup>-3</sup>) and total available water (TAW) (0.038 m.m<sup>-1</sup>), respectively, and the differences between NT and MP in total porosity was significant. Overall, in most soil layers, tillage practices affected the porosity and total available water in the order MP &gt; CP &gt; NT. Water retention curves indicated that the water retention capacity was greater in tilled than in no-tilled and saturated hydraulic conductivity values were greater in tilled treatments than in NT soil.</p>


HortScience ◽  
2009 ◽  
Vol 44 (6) ◽  
pp. 1694-1697 ◽  
Author(s):  
Jean-Charles Michel

The role of clay incorporation on the physical properties and wettability of peat-growing media was assessed from water retention curves and from contact angle and water drop penetration time measurements, respectively. Two peat substrates presenting different degrees of decomposition (weakly and highly decomposed Sphagnum peat) were used and mixed with clay in the form of powder with a peat:clay ratio of 90:10 (by vol.). Results indicated relatively little change in water retention resulting from clay incorporation in the peat-growing media tested. On the other hand, they showed a significant improvement of the wettability of both substrates in the driest conditions when peat-growing media presented a pronounced hydrophobic character, whereas the wettability of materials was not changed in the wettest conditions when they were largely hydrophilic. The influence of the degree of peat decomposition was also observed with somewhat higher wettability for the weakly decomposed peat:clay mixture than for the highly decomposed peat:clay mixture. Because the hydrophobic character of highly decomposed peat is more pronounced and appears at a higher water content than weakly decomposed peat, the effect of clay addition also appears at higher water contents for highly decomposed peat. Incorporating clay into peat-growing media should be considered for its ability to improve the wettability of growing media with a hydrophobic character (i.e., to improve the ability of the growing media to be rewetted) rather than only its ability to influence the water retention characteristics of the growing media.


1999 ◽  
Vol 17 (1) ◽  
pp. 49-52 ◽  
Author(s):  
Robert H. Stamps ◽  
Michael R. Evans

Abstract A comparison was made of Canadian sphagnum peat (SP) and Philippine coconut (Cocos nucifera L.) coir dust (CD) as growing media components for greenhouse production of Dracaena marginata Bak. and Spathiphyllum Schott ‘Petite’. Three soilless foliage plant growing mixes (Cornell, Hybrid, University of Florida #2 [UF-2]) were prepared using either SP or CD and pine bark (PB), vermiculite (V), and/or perlite (P) in the following ratios (% by vol): Cornell = 50 CD or SP:25 V:25 P, Hybrid = 40 CD or SP:30 V:30 PB, UF-2 = 50 CD or SP: 50 PB. Dracaena root growth was not affected by treatments but there were significant mix × media component interactions that affected plant top growth parameters. In general, the growth and quality of D. marginata were reduced by using CD in Cornell, had no effect in Hybrid, and increased in UF-2. S. ‘Petite’ grew equally well in all growing mixes regardless of whether CD or SP was used; however, plants grew more in Cornell and Hybrid than in UF-2. S. ‘Petite’ roots, which were infested with Cylindrocladium spathiphylli, had higher grades when grown in CD than when the media contained SP.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
E. Hanggari Sittadewi., dkk

Nutrient Block is a growing medium product in the form of a square (25 x 25 cm) or cylindrical (diameter = 20 cm, height = 25 cm) made of peat which has been composted, plus adhesive gypsum or tapioca waste. Nutrient Block is designed to support the post mining land rehabilitation program that is now threatening the environmental degradation in mining areas. Nutrient Block products has been proved good for growth because of the media in addition to having physical properties that are capable of storing large amounts of water, contain enough nutrients in the form available to plants,so it can support plant growth. Results of the Nutrient Block application test to Jabon (Anthocephalus cadaba) and Sengon (Paraserianthes falcataria) plants showed that good performance, both plant height and diameter of trees and leaf growth in plants Jabon appear healthy and getting wider.keywords: nutrient block, post-mining land rehabilitation. Paraserianthes falcataria, Anthocephalus cadaba


2021 ◽  
Vol 11 (5) ◽  
pp. 2113-2125
Author(s):  
Chenzhi Huang ◽  
Xingde Zhang ◽  
Shuang Liu ◽  
Nianyin Li ◽  
Jia Kang ◽  
...  

AbstractThe development and stimulation of oil and gas fields are inseparable from the experimental analysis of reservoir rocks. Large number of experiments, poor reservoir properties and thin reservoir thickness will lead to insufficient number of cores, which restricts the experimental evaluation effect of cores. Digital rock physics (DRP) can solve these problems well. This paper presents a rapid, simple, and practical method to establish the pore structure and lithology of DRP based on laboratory experiments. First, a core is scanned by computed tomography (CT) scanning technology, and filtering back-projection reconstruction method is used to test the core visualization. Subsequently, three-dimensional median filtering technology is used to eliminate noise signals after scanning, and the maximum interclass variance method is used to segment the rock skeleton and pore. Based on X-ray diffraction technology, the distribution of minerals in the rock core is studied by combining the processed CT scan data. The core pore size distribution is analyzed by the mercury intrusion method, and the core pore size distribution with spatial correlation is constructed by the kriging interpolation method. Based on the analysis of the core particle-size distribution by the screening method, the shape of the rock particle is assumed to be a more practical irregular polyhedron; considering this shape and the mineral distribution, the DRP pore structure and lithology are finally established. The DRP porosity calculated by MATLAB software is 32.4%, and the core porosity measured in a nuclear magnetic resonance experiment is 29.9%; thus, the accuracy of the model is validated. Further, the method of simulating the process of physical and chemical changes by using the digital core is proposed for further study.


Sign in / Sign up

Export Citation Format

Share Document