water contents
Recently Published Documents


TOTAL DOCUMENTS

1515
(FIVE YEARS 336)

H-INDEX

63
(FIVE YEARS 7)

2022 ◽  
Vol 1 ◽  
pp. 100001
Author(s):  
Chiharu Ueda ◽  
Junsu Park ◽  
Kazuya Hirose ◽  
Subaru Konishi ◽  
Yuka Ikemoto ◽  
...  
Keyword(s):  

Author(s):  
Rafik Isaam Abdallah ◽  
Céline Perlot ◽  
Hélène Carré ◽  
Christian La Borderie ◽  
Haissam El Ghoche

This study focus on the effects of both water content and cement stabilization on the fire behavior of earth bricks. To observe the effect of cement stabilization, two materials are formulated: raw earth with only soil and water, and stabilized bricks with soil, water and cement (3.5% by mass of soil). Since the material’s mechanical strength can strongly influence its fire behavior, the raw bricks were compacted at 50 MPa to reach a compressive strength similar to the one of stabilized bricks. Four different water contents were tested; dry state obtained with oven drying and three others achieved through equalization at 50%, 75% and 100% of relative humidities. Bricks are then subjected to an ISO 834-1 standard fire. Results show that water content has caused a thermal instability behavior on the raw earth bricks after equalization at 50% and 75% relative humidities. Thermally stable bricks displayed a noticeable diffusion of cracks on their heated face. Furthermore, cement stabilization helps to prevent from thermal instabilities.


2022 ◽  
Author(s):  
Hyun-Seok Yun ◽  
Seong-Woo Moon ◽  
Yong-Seok Seo

Abstract Determining the mechanical properties of fault-core-zone materials is challenging because of the low strength of such materials, which affects field sampling, specimen preparation, and laboratory testing. We overcame this problem by preparing and testing mechanical properties of 132 artificial fault-core-zone specimens consisting of mixtures of breccia, sand, clay, and water. The unconfined compressive strength (UCS), elastic modulus (E), and penetration resistance value (PRV) of these fault-core-zone materials were measured, and the effects of breccia content and water content on mechanical properties were assessed. Results show that UCS is inversely proportional to breccia content and water content, and that E is inversely proportional to water content. Furthermore, the inverse relationship of UCS with water content varies with breccia content. UCS is proportional to both PRV and E, and the relationship for each varies with breccia content. High coefficients of determination (R2 = 0.62–0.88) between the parameters suggest that breccia content, water content, and PRV are potentially useful parameters for estimating the mechanical properties of fault core zones.


Author(s):  
Xiangwei Liu ◽  
Qian Ao ◽  
Shengyou Shi ◽  
Shuie Li

Abstract The existing CO2 absorption by deep eutectic solvents is limited by the unavoidable water absorption problem during use. In this study, we prepared three deep eutectic solvents with different alcohol aminations and added different water contents to discuss the effect of water content on the absorption of carbon dioxide by deep eutectic solvents. All deep eutectic solvents have a low melting point at room temperature as a liquid and have high thermal stability, where the choline chloride-diethanolamine deep eutectic solvents have a high viscosity. Anhydrous choline chloride-monoethanolamine deep eutectic solvents have the largest CO2 absorption, reaching 0.2715 g/g, and the absorption of CO2 by anhydrous choline chloride-N-methyldiethanolamine deep eutectic solvents is only 0.0611 g/g. Water content inhibited the absorption of CO2 in primary amine and secondary amine systems, whereas it enhanced the absorption of CO2 in tertiary amine systems, which was related to the reaction process of deep eutectic solvent and CO2.


Fuel ◽  
2022 ◽  
Vol 308 ◽  
pp. 122076
Author(s):  
Marcos Antonio Polinarski ◽  
Andressa Caroline Neves ◽  
Adriana Fiorini ◽  
Fábio Rogério Rosado ◽  
Edson Antonio da Silva ◽  
...  

Author(s):  
Dr. G. Sireesha

Abstract: The variation of the stress-strain behavior and shear -parameters of reinforced silty sand is studied. The geotextiles were provided at different heights in the sample and tested in unconsolidated undrained condition. Two types of geotextiles, woven and nonwoven were used as reinforcement and the experiment was conducted at three water contents. Tests were performed on samples prepared at OMC, dry of OMC and wet of OMC in order to study the effect of water content. The results demonstrated that geotextile inclusion increases the peak strength, axial strain at failure. The sample was found to fail due to bulging between the layers. Keywords: Optimum Moisture Content, Maximum Dry Density, Unconsolidated Undrained, Deviator Stress, Normal Stress


Author(s):  
Alivia Paul ◽  
Sabarni Biswas ◽  
Ritesh Banerjee ◽  
Anita Mukherjee ◽  
Asok K. Biswas

Background: Salinity challenges legume production worldwide. To maintain the overall legume production, seed halopriming has been adopted as a cost-effective, farmer friendly technique, minimizing noxious effects of NaCl on plant growth. Methods: Nonprimed and haloprimed seeds were grown under different NaCl concentrations and harvested after 21 days. NaCl-induced alterations on physio-biochemical attributes and DNA damage were studied. Result: NaCl exposure in nonprimed seedlings exhibited growth inhibition, depletion in water contents, increased accumulation of H2O2, MDA and proline causing DNA damage. Conversely, in primed seedlings, these toxic effects were altered and extent of DNA damage reduced. Decreased catalase activity in nonprimed seedlings failed to detoxify the ROS generated under salinity inducing DNA damage whereas in NaCl-treated haloprimed seedlings, improved catalase activity helped to overcome such adversities favouring improved growth of all tested legume varieties.


2021 ◽  
Author(s):  
Laurent Lassabatere ◽  
Pierre-Emmanuel Peyneau ◽  
Deniz Yilmaz ◽  
Joseph Pollacco ◽  
Jesús Fernández-Gálvez ◽  
...  

Abstract. Sorptivity is one of the most important parameters for the quantification of water infiltration into soils. Parlange (1975) proposed a specific formulation to derive sorptivity as a function of the soil water retention and hydraulic conductivity functions, as well as initial and final soil water contents. However, this formulation requires the integration of a function involving the hydraulic diffusivity, which may be undefined or present numerical difficulties that cause numerical misestimations. In this study, we propose a mixed formulation that scales sorptivity and splits the integrals into two parts: the first term involves the scaled degree of saturation while the second involves the scaled water pressure head. The new mixed formulation is shown to be robust and well-suited to any type of hydraulic functions - even with infinite hydraulic diffusivity or positive air-entry water pressure heads - and any boundary condition, including infinite initial water pressure head, h → −∞.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yanju Fu ◽  
Yao Jiang ◽  
Jiao Wang ◽  
Ziming Liu ◽  
Xingsheng Lu

Due to the warming climate, glacier retreat has left massive glacial tills in steep gullies; ice in the soil is prone to change phase resulting in the decrease of the ice strength and bonding of soil particles; collapse of thawing tills can lead to debris flows with disastrous consequences for geotechnical infrastructures. To improve our understanding of the mechanics of thawing glacial tills, we conducted unconsolidated–undrained direct shear tests on glacial tills from Tianmo gully on the southeastern Tibetan Plateau. Control specimens were not subjected to freeze–thaw action. A total of 648 specimens with three different dry densities, three initial water contents, and 18 thawing times were tested. Peak shear strength, peak stress to displacement ratio (0.857), and cohesion were the highest in frozen specimens. After a thawing time of 0.25 h, there was a marked decline in shear strength; maximum friction was 2.58, which was far below the value of cohesive strength. For thawing times of 0.25–4 h, peak strength varied little with thawing time, but cohesion decreased and internal friction angle increased with increasing thawing time. Our results indicate that thawing of the solid ice in the till during the initial phase of till thawing is the key control of peak till strength; the effect of ice on cohesion is greater during the initial phase of thawing and in loose tills. Moreover, frequent sediment recharge of gullies may be explained by the decrease of cohesion with increasing thawing time caused by short-term destruction of ice bonding.


Sign in / Sign up

Export Citation Format

Share Document