Tools and technologies for NEMO models: the case of the Generic Interfaces developed in the framework of IMMERSE

Author(s):  
Laura Stefanizzi ◽  
Stefania Ciliberti ◽  
Mehmet Ilicak ◽  
Giovanni Coppini

<p>Setting new model configurations based on NEMO requires the definition of initial/boundary condition and the validation of numerical solutions. In the framework of IMMERSE H2020 project, CMCC is developing new tools and technological capacities for handling in easy and reliable way external products, such CMEMS or coastal ocean data, for research-to-operations applications. Generic Interfaces for NEMO (InterNEMO) allow for 3 main scopes: 1) to access and discover the CMEMS catalogue, including both model and observational data; 2) to manipulate accessed datasets, including coastal ocean data, to extract relevant physical information to use for setting initial/boundary conditions for a new NEMO-based configurations; 3) to prepare NEMO set of upstream files and to validate NEMO solution by using CMEMS observational datasets. InterNEMO implements also technologies to connect a NEMO user to Wekeo DIAS (https://www.wekeo.eu/) for the interoperable accessing and processing of CMEMS data. In this contribution, we present the InterNEMO architecture developed in Python via Jupyter Notebooks, to support the user/researcher to easily discover, design and configure modeling components required by the new NEMO-based configuration. InterNEMO is tested for the Black Sea hydrodynamical model configuration, developed by CMCC in the framework of the Black Sea Monitoring and Forecasting Centre (BS-MFC) for CMEMS a) to show how to access CMEMS observations through Wekeo DIAS and use them to validate numerical solutions and b) to define open boundary conditions from an unstructured grid model configuration based on Shyfem, developed for the Marmara Sea.</p>

2019 ◽  
Author(s):  
Murat Gunduz ◽  
Emin Özsoy ◽  
Robinson Hordoir

Abstract. The Bosphorus exchange is of critical importance for hydrodynamics of the Black Sea. In this study, we report on the development of a medium resolution circulation model of the Black Sea, making use of up-to-date topography, atmospheric forcing with high space and time resolution, climatic river fluxes and strait exchange enabled by adding the Bosphorus Strait with an artificial box on the Marmara Sea side. Particular attention is given to circulation, mixing, convective water mass formation processes compared with observations. The present formulation with temperature and salinity relaxed to the observed seasonal climatology of the Marmara box and open boundary conditions are found to enable Bosphorus exchange with upper, lower layer and net fluxes comparable to the observed range. This in turn enables to capture the trend of rapid climatic change observed in the Black Sea in the last decade.


2020 ◽  
Vol 13 (1) ◽  
pp. 121-138 ◽  
Author(s):  
Murat Gunduz ◽  
Emin Özsoy ◽  
Robinson Hordoir

Abstract. The Bosphorus exchange is of critical importance for hydrodynamics and hydroclimatology of the Black Sea. In this study, we report on the development of a medium-resolution circulation model of the Black Sea, making use of surface atmospheric forcing with high space and time resolution, climatic river fluxes and strait exchange, enabled by adding elementary details of strait and coastal topography and seasonal hydrology specified in an artificial box on the Marmara Sea side. Particular attention is given to circulation, mixing and convective water mass formation processes in the model, which are then compared with observations. Open boundary conditions relaxed to seasonal hydrology specified in the artificial box are found to enable Bosphorus exchange with a proper upper layer, lower layer and net fluxes comparable to the observed ranges. These improvements at the artificial boundary and in the interior evolution of the Black Sea allow the study to capture daily, seasonal to decadal climatic variability and change observed in the Black Sea in the last few decades.


2021 ◽  
Author(s):  
Mehmet Ilicak ◽  
Ivan Federico ◽  
Ivano Barletta ◽  
Nadia Pinardi ◽  
Stefania Angela Ciliberti ◽  
...  

<p>Marmara Sea including Bosphorus and Dardanelles Straits (i.e. Turkish Strait Systems, TSS) is the connection between the Black Sea and the Mediterranean. The exchange flow that occurs in the Straits is crucial to set the deep water properties in the Black Sea and the surface water conditions in the Northern Aegean Sea. We have developed a new high-resolution unstructured grid model (U-TSS) for the Marmara Sea including the Bosporus and Dardanelles Straits using the System of HydrodYnamic Finite Element Modules (SHYFEM). Using an unstructured grid in the horizontal better resolves geometry of the Turkish Straits. The new model has a resolution between 500 meter in the deep to 50 meter in the shallow areas, and 93 geopotential coordinate levels in the vertical. We conducted a 4 year hindcast simulation between 2016 and 2019 using lateral boundary conditions from CMEMS (https://marine.copernicus.eu/) analysis, in particular Black Sea Forecasting System (BS-FS) for the northern boundary and Mediterranean Sea Forecasting System (MS-FS) for the southern boundary. Atmospheric boundary conditions fare from the ECMWF dataset.</p><p>Mean averaged surface circulation shows that there is a cyclonic gyre in the middle of the basin due to Bosphorus jet flowing to the south and turning to west after reaching the southern Marmara coast. The U-TSS model has been validated against the seasonal in situ observations obtained from four different cruises between 2017 and 2018. The maximum bias occurs at around halocline depth between 20 to 30 meters.  We also found that root mean square error field is higher in the mixed layer interface. We conclude that capturing shallow mixed layer depth is very in the Marmara Sea due to the interplay of air-sea fluxes and mixing parametrizations uncertainties. Maximum salinity bias and rms in the new U-TSS model are around 3 psu which is a significant improvement with respect to previous studies. This new model will be used as an operational forecasting system and will provide lateral boundary conditions for the BS-FS and MS-FS models in the future.</p>


2021 ◽  
Vol 9 (7) ◽  
pp. 769
Author(s):  
Mehmet Ilicak ◽  
Ivan Federico ◽  
Ivano Barletta ◽  
Sabri Mutlu ◽  
Haldun Karan ◽  
...  

The Turkish Strait System, which is the only connection between the Black Sea and the Mediterranean Sea, is a challenging region for ocean circulation models due to topographic constraints and water mass structure. We present a newly developed high resolution unstructured finite element grid model to simulate the Turkish Strait System using realistic atmospheric forcing and lateral open boundary conditions. We find that the jet flowing from the Bosphorus Strait into the Marmara creates an anticyclonic circulation. The eddy kinetic energy field is high around the jets exiting from the Bosphorus Strait, Dardanelles Strait, and also the leeward side of the islands in the Marmara Sea. The model successfully captures the two-layer structure of the Sea of Marmara. The volume transport at the Bosphorus is around 120 km3/year which is consistent with the recent observations. The largest bias in the model is at the interface depth due to the shallower mixed layer.


2006 ◽  
Vol 23 (11) ◽  
pp. 1604-1613 ◽  
Author(s):  
P. Marsaleix ◽  
F. Auclair ◽  
C. Estournel

Abstract This paper reviews the usual open boundary conditions (OBCs) for coastal ocean models and proposes a complete set of open boundaries based on stability criteria, on mass and energy conservation arguments, and on the ability to enforce external information. This set includes a radiation condition for barotropic variables, an equation of wave propagation for baroclinic velocities, and an advection equation for tracers. Considerations on mass and energy conservation properties suggest a suitable numerical treatment of the barotropic scheme, which is different from what is commonly used. Restoring terms, when classically added in the Sommerfeld OBCs, are not consistent with external fields. It is shown that this can be avoided if proper numerical schemes are used or if OBCs are applied on differences between the model and forcing rather than on absolute variables. Finally, this paper shows that simplistic advection-type methods for temperature and salinity should not be used in sigma coordinate models because this introduces errors in the computation of the horizontal pressure gradient.


1995 ◽  
Vol 32 (7) ◽  
pp. 63-70
Author(s):  
I. Ethem Gönenç ◽  
Oguz Müftüoglu ◽  
Bilsen Beler Baykal ◽  
Ertugrul Dogan ◽  
Hüseyin Yüce ◽  
...  

Unlike other seas of the world, the Black Sea shows unique quality and trophic properties. Fortunately, only the upper layer water of the Black Sea is introduced into the Bosphorus and has a significant effect on the quality and trophic conditions of the Marmara Sea. These effects are discussed in the light of data obtained from collaborative efforts of Turkish and Romanian research institutions and processed satellite images. In conjunction with these discussions, recommendations for a suitable effluent disposal strategy for Istanbul's wastewater have been given.


1995 ◽  
Vol 32 (2) ◽  
pp. 141-148 ◽  
Author(s):  
I. S. Hansen ◽  
H. J. Vested ◽  
M. A. Latif

A modelling study of the hydrodynamics and spreading of wastewater from existing and future outfalls in the Bosphorus region has been conducted applying a 3-Dimensional model. The modelling is based on SYSTEM 3, which is a general modelling system for baroclinic flow simulating unsteady currents, waterlevels, salinity and temperature within the model area. The model set-up covers the Black Sea-Bosphorus-Marmara Sea junction area. The set-up is calibrated by data from a dedicated field program and previous field experience. The model is designed to describe the characteristic features of the flow in the junction area such as the effects of variations in waterlevel differences between the Sea of Marmara and the Black Sea on the important two-layer structure in the strait and the flow fields generated by the upper layer jet in the Bosphorus-Marmara junction. This model has been applied for evaluation of disposal of wastewater and for the subsequent water quality studies. The general use of a baroclinic 3-D hydrodynamic model to simulate disposal of wastewater is discussed. Examples of the application of the model of the junction area to evaluate the different strategies for disposal of wastewater are presented.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Linhu Li ◽  
Ching Hua Lee ◽  
Jiangbin Gong

AbstractNon-Hermitian systems have been shown to have a dramatic sensitivity to their boundary conditions. In particular, the non-Hermitian skin effect induces collective boundary localization upon turning off boundary coupling, a feature very distinct from that under periodic boundary conditions. Here we develop a full framework for non-Hermitian impurity physics in a non-reciprocal lattice, with periodic/open boundary conditions and even their interpolations being special cases across a whole range of boundary impurity strengths. We uncover steady states with scale-free localization along or even against the direction of non-reciprocity in various impurity strength regimes. Also present are Bloch-like states that survive albeit broken translational invariance. We further explore the co-existence of non-Hermitian skin effect and scale-free localization, where even qualitative aspects of the system’s spectrum can be extremely sensitive to impurity strength. Specific circuit setups are also proposed for experimentally detecting the scale-free accumulation, with simulation results confirming our main findings.


Sign in / Sign up

Export Citation Format

Share Document