Lab experiments to quantify wind induced microstructural modifications of surface snow

Author(s):  
Benjamin Walter ◽  
Henning Löwe

<p>The microstructural evolution of surface snow under the influence of wind is hardly understood and poorly quantified, but crucial for polar and alpine snowpacks. Only few field studies addressed the process of wind affecting surface snow at the snow-atmosphere interface in detail. Available descriptions are based on empirical relations between snow density, wind velocity and air temperature. A microstructural picture discerning independent controls of snow crystal fragmentation, abrasion and sublimation is yet missing. </p><p>The goal of this project is to analyze the relevant physical processes responsible for wind induced microstructural modifications, and develop parametrizations from controlled wind-tunnel experiments. A ring-shaped wind tunnel (RWT) with an infinite fetch was used in a cold lab to quantify the snow microstructural evolution through systematic variations of flow, snow, and temperature conditions. For the drift experiments, dendritic fresh snow was produced in a WSL/SLF snowmaker and slowly added to the wind tunnel during the experiments simulating precipitation. Measurement techniques like X-ray tomography, SnowMicroPen, density cutters and IceCube were applied to characterize the snow density (ρ), specific surface area (SSA), particle size and shape and vertical layering before and after the highly dendritic new snow was exposed to the wind. </p><p>The vertical heterogeneity of the deposited snow was characterized by SnowMicroPen measurements, showing increasing densities towards the snow surface. Densification rates (normalized by the initial density ρ<sub>0</sub>) of the surface layer measured with a density cutter show an increase with increasing wind velocity and are two to three orders of magnitude higher than those measured for isothermal metamorphism, underlining the importance of accurately understanding wind induced microstructural modifications. Densification rates simulated with stat-of-the-art snow physical models span an order of magnitude, significantly deviating from the measured values. The SSA, measured with the IceCube instrument, decreases with a rate of change of approximately -0.1 h<sup>-1</sup>, which is an order of magnitude higher than the rates for isothermal metamorphism. We hypothesize that the smallest fragments disappear because of sublimation while being transported by the wind. </p><p>The results of this project will lead to an improved, fundamental understanding of optically and mechanically relevant microstructural properties of surface snow and are thus applicable to many cryospheric processes like avalanche formation, exchange of chemical species with the atmosphere, alpine and polar mass balances, or radiative transfer.</p>

2000 ◽  
Vol 64 (4) ◽  
pp. 379-396 ◽  
Author(s):  
R. BALESCU

The well-known Chirikov–Taylor standard map is studied using the methods of non-equilibrium statistical mechanics. It appears possible to simplify the master equation whenever the stochasticity parameter is small and the initial density profile is sharply localized in phase space: this defines the ‘localized weak-stochasticity’ (LWS) regime. The resulting equation of evolution of the density profile involves a convolution in time. Its most conspicuous feature is the absence of a ‘short’ intrinsic time scale: the memory time is infinite. The master equation can therefore not be Markovianized as in usual kinetic theory (or as in the diffusive regime of the standard map). Moreover, the initial value of the fluctuations influences the rate of change of the density profile at all times. Quite unexpectedly, the contributions of the two terms of the master equation to the density profile are of the same order of magnitude. As a result, they practically cancel each other. It is this curious feature that explains the suppression of the motion by the islands and the KAM barriers that is well known from the study of individual standard map orbits. The LWS approximation is valid for a limited time (which is very long when the initial localization is very sharp).


Author(s):  
Y. Tian ◽  
S. Zhang ◽  
W. Du ◽  
J. Chen ◽  
H. Xie ◽  
...  

Models based on physical principles or semi-empirical parameterizations have used to compute the firn density, which is essential for the study of surface processes in the Antarctic ice sheet. However, parameterization of surface snow density is often challenged by the description of detailed local characterization. In this study we propose to generate a surface density map for East Antarctica from all the filed observations that are available. Considering that the observations are non-uniformly distributed around East Antarctica, obtained by different methods, and temporally inhomogeneous, the field observations are used to establish an initial density map with a grid size of 30&amp;thinsp;&amp;times;&amp;thinsp;30&amp;thinsp;km<sup>2</sup> in which the observations are averaged at a temporal scale of five years. We then construct an observation matrix with its columns as the map grids and rows as the temporal scale. If a site has an unknown density value for a period, we will set it to 0 in the matrix. In order to construct the main spatial and temple information of surface snow density matrix we adopt Empirical Orthogonal Function (EOF) method to decompose the observation matrix and only take first several lower-order modes, because these modes already contain most information of the observation matrix. However, there are a lot of zeros in the matrix and we solve it by using matrix completion algorithm, and then we derive the time series of surface snow density at each observation site. Finally, we can obtain the surface snow density by multiplying the modes interpolated by kriging with the corresponding amplitude of the modes. Comparative analysis have done between our surface snow density map and model results. The above details will be introduced in the paper.


2012 ◽  
Vol 58 (209) ◽  
pp. 529-539 ◽  
Author(s):  
Shin Sugiyama ◽  
Hiroyuki Enomoto ◽  
Shuji Fujita ◽  
Kotaro Fukui ◽  
Fumio Nakazawa ◽  
...  

AbstractDuring the Japanese-Swedish Antarctic traverse expedition of 2007/08, we measured the surface snow density at 46 locations along the 2800 km long route from Syowa station to Wasa station in East Antarctica. The mean snow density for the upper 1 (or 0.5) m layer varied from 333 to 439 kg m-3 over a region spanning an elevation range of 365-3800 ma.s.l. The density variations were associated with the elevation of the sampling sites; the density decreased as the elevation increased, moving from the coastal region inland. However, the density was relatively insensitive to the change in elevation along the ridge on the Antarctic plateau between Dome F and Kohnen stations. Because surface wind is weak in this region, irrespective of elevation, the wind speed was suggested to play a key role in the near-surface densification. The results of multiple regression performed on the density using meteorological variables were significantly improved by the inclusion of wind speed as a predictor. The regression analysis yielded a linear dependence between the density and the wind speed, with a coefficient of 13.5 kg m-3 (m s-1)-1. This relationship is nearly three times stronger than a value previously computed from a dataset available in Antarctica. Our data indicate that the wind speed is more important to estimates of the surface snow density in Antarctica than has been previously assumed.


2021 ◽  
Author(s):  
Giuseppe Porpiglia ◽  
Paolo Schito ◽  
Tommaso Argentini ◽  
Alberto Zasso

<p>This paper introduces a new methodology to assess the influence of a windscreen on the crosswind performance of trains running on a bridge. Considering the difficulties encountered in both carrying out wind tunnel tests that consider the vehicle speed or complete CFD analyses, a simplified CFD approach is here discussed. Instead of simulating simultaneously the windscreen plus the moving train, the numerical problem is split into two parts: firstly, a simulation of the windshield alone is used to extract the perturbed velocity profile at the railway location; secondly, this profile used as an inlet condition for the wind velocity acting on an isolated train. The method is validated against a complete train plus windshield simulation in terms of pressure distribution and aerodynamic force coefficients on the train, and flow streamlines. This approach opens to the possibility of evaluating the aerodynamic performance of a vehicle on bridges considering bridge and vehicle as separated. Wind velocity profiles measured on the bridge during a wind tunnel campaign could be used as the initial condition for numerical simulations on vehicles.</p>


2001 ◽  
Vol 32 ◽  
pp. 159-162 ◽  
Author(s):  
Yukari Takeuchi ◽  
Shun’ichi Kobayashi ◽  
Takeshi Sato ◽  
Kaoru Izumi ◽  
Kenji Kosugi ◽  
...  

AbstractSnowdrifting processes and the wind-velocity profiles around a collector and a blower snow fence were investigated in a cold wind tunnel. The purpose was to ascertain the effect of wind direction on drift control by snow fences. Three different cases were studied for both types of snow fence, and the resultant snowdrifts were compared. In the first case, the snow fence was perpendicular to the wind direction. In the second and third cases, it was tilted by 30° and 45°. When the collector snow fence was tilted, the amounts of snowdrift were much less than when the fence was perpendicular to the wind direction, because the area with low wind velocity was reduced to half behind the tilted fence. On the other hand, the blowing effect of the blower snow fence increased when it was set up at an angle to the wind direction. It is necessary to investigate the position where the blown snow is deposited by the tilted blower snow fence.


Records of sea level for several North Sea ports for the winter of 1953-4 have been in vestigated. They were split into 14-day intervals, and each 14-day record was Fourieranalyzed to determine if any non-astronomical periods were present. There was evidence of some activity between 40 and 50 h period, and a determination of the phase angles at different ports showed that the activity could be due to a disturbance travelling southwards from the north of the North Sea. The disturbance was partly reflected somewhere near the line from Lowestoft to Flushing, so that one part returned past Flushing and Esbjerg towards Bergen while the other part travelled towards Dover, and there was evidence of its existence on the sea-current records taken near St Margaret's Bay. These results were confirmed by subtracting the predicted astronomical tidal levels from the observed values of sea level and cross-correlating the residuals so obtained for each port with those found at Lowestoft. The residuals at Lowestoft and Aberdeen were compared with the meteorological conditions, and it was found that, although they could be attributed to a large extent to conditions within the North Sea, there was an additional effect due to a travelling surge which was of the same order of magnitude at both Lowestoft and Aberdeen and which was closely related to the rate of change with time of the atmospheric pressure difference between Wick and Bergen.


2009 ◽  
Author(s):  
Frederik C. Gerhardt ◽  
David Le Pelley ◽  
Richard G. J. Flay ◽  
Peter Richards

In recent years a number of Dynamic Velocity Prediction Programs (DVPPs), which allow studying the behaviour of a yacht while tacking, have been developed. The aerodynamic models used in DVPPs usually suffer from a lack of available data on the behaviour of the sail forces at very low apparent wind angles where the sails are flogging. In this paper measured aerodynamic force and moment coefficients for apparent wind angles between 0° and 30° are presented. Tests were carried out in the University of Auckland’s Twisted Flow Wind Tunnel in a quasi-steady manner for stepwise changes of the apparent wind angle. Test results for different tacking scenarios (genoa flogging or backed) are presented and discussed and it is found that a backed headsail does not necessarily produce more drag than a flogging headsail but increases the beneficial yawing moment significantly. The quasisteady approach used in the wind tunnel tests does not account for unsteady effects like the aerodynamic inertia in roll due to the “added mass” of the sails. In the second part of paper the added mass moment of inertia of a mainsail is estimated by “strip theory” and found to be significant. Using expressions from the literature the order of magnitude of three-dimensional effects neglected in strip theory is then assessed. To further quantify the added inertia experiments with a mainsail model were carried out. Results from those tests are presented at the end of the paper and indicate that the added inertia is about 76 % of what strip theory predicts.


2009 ◽  
Author(s):  
Kai Graf ◽  
Olaf Müller

This paper describes a method for the acquisition of the flying shape of spinnakers in a twisted flow wind tunnel. The method is based on photogrammetry. A set of digital cameras is used to obtain high resolution images of the spinnaker from different viewing angles. The images are post-processed using image-processing tools, pattern recognition methods and finally the photogrammetry algorithm. Results are shown comparing design versus flying shape of the spinnaker and the impact of wind velocity and wind twist on the flying shape. Finally some common rules for optimum spinnaker trimming are investigated and examined.


2019 ◽  
Vol 19 (7) ◽  
pp. 4823-4849 ◽  
Author(s):  
Naruki Hiranuma ◽  
Kouji Adachi ◽  
David M. Bell ◽  
Franco Belosi ◽  
Hassan Beydoun ◽  
...  

Abstract. We present the laboratory results of immersion freezing efficiencies of cellulose particles at supercooled temperature (T) conditions. Three types of chemically homogeneous cellulose samples are used as surrogates that represent supermicron and submicron ice-nucleating plant structural polymers. These samples include microcrystalline cellulose (MCC), fibrous cellulose (FC) and nanocrystalline cellulose (NCC). Our immersion freezing dataset includes data from various ice nucleation measurement techniques available at 17 different institutions, including nine dry dispersion and 11 aqueous suspension techniques. With a total of 20 methods, we performed systematic accuracy and precision analysis of measurements from all 20 measurement techniques by evaluating T-binned (1 ∘C) data over a wide T range (−36 ∘C <T<-4 ∘C). Specifically, we intercompared the geometric surface area-based ice nucleation active surface site (INAS) density data derived from our measurements as a function of T, ns,geo(T). Additionally, we also compared the ns,geo(T) values and the freezing spectral slope parameter (Δlog(ns,geo)/ΔT) from our measurements to previous literature results. Results show all three cellulose materials are reasonably ice active. The freezing efficiencies of NCC samples agree reasonably well, whereas the diversity for the other two samples spans ≈ 10 ∘C. Despite given uncertainties within each instrument technique, the overall trend of the ns,geo(T) spectrum traced by the T-binned average of measurements suggests that predominantly supermicron-sized cellulose particles (MCC and FC) generally act as more efficient ice-nucleating particles (INPs) than NCC with about 1 order of magnitude higher ns,geo(T).


Atmosphere ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 564 ◽  
Author(s):  
Li ◽  
Peng ◽  
Ji ◽  
Hu ◽  
Ding

Correlation research on urban space and pedestrian–level wind (PLW) environments is helpful for improving the wind comfort in complex urban space. It could also be significant for building and urban design. Correlation research is usually carried out in a space with clear urban spatial characteristics, so it is necessary to define the space first. In this paper, a typical urban area in Nanjing, China, is selected as the research object, and a spatial partition method is used to divide the real complex urban space into subspaces. The urban spatial characteristics of such subspaces are quantified using three urban spatial indices: openness (O), area (A), and shape (S). By comparing the quantitative results, 24 (12 pairs) subspaces with prominent urban spatial indices are selected as the correlation research cases. The 24 subspaces also provide a reference for the layout of the measurement points in a wind tunnel experiment. This is a new arrangement for locating the measurement points of a wind tunnel for correlation research. In the experiment, 45 measurement points are located, and the mean wind velocity of four different wind directions at 45 measurement points is experimented. The results clearly show that, when the experimental conditions are the same, the changes of mean wind velocity ratio (UR) of 24 (12pairs) subspaces under the four experimental wind directions are close. The URs of the subspaces are not significantly affected by the wind direction, which is affected more by the subspaces’ spatial characteristics. When making the correlation analysis between mean wind speed ratio and spatial characteristics’ indices, a direct numerical comparison was not able to find a correlation. By comparing the difference values of mean wind speed (△UR) and indices between each pair of subspaces, the correlation between UR and openness of subspaces were found. Limited by spatial partition method, the correlation between UR and the other indices was not obvious.


Sign in / Sign up

Export Citation Format

Share Document