Synconvergent and coherent (ultra)high-pressure crustal rock exhumation

Author(s):  
Lorenzo G. Candioti ◽  
Joshua D. Vaughan-Hammon ◽  
Thibault Duretz ◽  
Stefan M. Schmalholz

<p>Ultrahigh-pressure (UHP) continental crustal rocks were first discovered in the Western Alps in 1984 and have since then been observed at many convergent plate boundaries worldwide. Unveiling the processes leading to the formation and exhumation of (U)HP metamorphic crustal rocks is key to understand the geodynamic evolution of orogens such as the Alps.</p><p> </p><p>Previous numerical studies investigating (U)HP rock exhumation in the Alps predicted deep (>80 km) subduction of crustal rocks and rapid buoyancy-driven exhumation of mainly incoherent (U)HP units, involving significant tectonic mixing forming so-called mélanges. Furthermore, these predictions often rely on excessive erosion or periods of divergent plate motion as important exhumation mechanism. Inconsistent with field observations and natural data, application of these models to the Western Alps was recently criticised.</p><p> </p><p>Here, we present models with continuous plate convergence, which exhibit local tectonic-driven upper plate extension enabling compressive- and buoyancy-driven exhumation of coherent (U)HP units along the subduction interface, involving feasible erosion.</p><p> </p><p>The two-dimensional petrological-thermo-mechanical numerical models presented here predict both subduction initiation and serpentinite channel formation without any a priori prescription of these two features. The (U)HP units are exhumed coherently, without significant internal deformation. Modelled pressure and temperature trajectories and exhumation velocities of selected crustal units agree with estimates for the Western Alps. The presented models support previous hypotheses of synconvergent exhumation, but do not rely on excessive erosion or divergent plate motion. Thus, our predictions provide new insights into processes leading to the exhumation of coherent (U)HP crustal units consistent with observations and natural data from the Western Alps.</p>

2020 ◽  
Vol 191 ◽  
pp. 19 ◽  
Author(s):  
Stéphane Mazzotti ◽  
Hervé Jomard ◽  
Frédéric Masson

Most of metropolitan France and conterminous Western Europe is currently located within the Eurasia intraplate domain, far from major plate boundaries (the Atlantic ridge and Nubia – Eurasia convergence zone). As in other intraplate regions, present-day deformation and seismicity rates are very slow, resulting in limited data and strong uncertainties on the ongoing seismotectonics and seismic hazards. In the last two decades, new geological, seismological and geodetic data and research have brought to light unexpected deformation patterns in metropolitan France, such as orogen-normal extension ca. 0.5 mm yr−1 in the Pyrenees and Western Alps that cannot be associated with their mountain-building history. Elsewhere, present-day deformation and seismicity data provide a partial picture that points to mostly extensive to strike-slip deformation regimes (except in the Western Alps foreland). A review of the numerous studies and observations shows that plate tectonics (plate motion, mantle convection) are not the sole, nor likely the primary driver of present-day deformation and seismicity and that additional processes must be considered, such as topography potential energy, erosion or glacial isostatic adjustment since the last glaciation. The exact role of each process probably varies from one region to another and remains to be characterized. In addition, structural inheritance (crust or mantle weakening from past tectonic events) can play a strong role in deformation localization and amplification up to factors of 5–20, which could explain some of the spatial variability in seismicity. On the basis of this review, we identify three research directions that should be developed to better characterize the seismicity, deformation rates and related processes in metropolitan France: macroseismic and historical seismicity, especially regarding moment magnitude estimations; geodetic deformation, including in regions of low seismicity where the ratio of seismic to aseismic deformation remains a key unknown; an integrated and consistent seismotectonic framework comprising numerical models, geological, seismological and geodetic data. The latter has the potential for significant improvements in the characterization of seismicity and seismic hazard in metropolitan France but also Western Europe.


2020 ◽  
Author(s):  
Giridas Maiti ◽  
Joyjeet Sen ◽  
Nibir Mandal

<p>Subduction zones witness exhumation of deep crustal rocks metamorphosed under high pressure (HP) and ultra-high pressure (UHP) conditions, following burial to depths of 100 km or more. The exhumation dynamics of HP and UHP rocks still remains a lively issue of research in the Earth science community. We develop a new tectonic model based on the lubrication dynamics to show the exhumation mechanism of such deep crustal rocks in convergent tectonic settings. Our model suggests subducting plate motion produces a dynamic pressure in the subduction wedge, which supports the excess gravitational potential energy of the thicker and relatively denser overriding plate partly lying over the buoyant subduction wedge. A drop in the dynamic pressure causes the overriding plate to undergo gravitational collapse and forces the wedge materials to return to the surface. Using lubrication theory we estimate the magnitude of dynamic pressure (<em>P</em>) in the wedge as a function of subduction velocity (<em>u<sub>s</sub></em>), convergence angle (<em>α</em>) and wedge viscosity (<em>µ</em>). We also conduct thermo-mechanical numerical experiments to implement the lubrication model in subduction zones on a real scale. Our analysis suggests that drop in wedge dynamic pressure below a threshold value due to decease in <em>u</em><sub><em>s</em>  </sub>and <em>µ</em>, or by other processes, such as slab rollback and trench retreat facilitate exhumation of deep crustal rocks. Finally we discuss their implications for the exhumation of deep crustal rocks in different subduction setups such as the Himalayan continental subduction, the Mediterranean realm (Calabria–Apennine and Aegean belts) and Western Alps.</p>


Solid Earth ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 2303-2326
Author(s):  
Ruth Keppler ◽  
Roman Vasin ◽  
Michael Stipp ◽  
Tomás Lokajícek ◽  
Matej Petruzálek ◽  
...  

Abstract. The crust within collisional orogens is very heterogeneous both in composition and grade of deformation, leading to highly variable physical properties at small scales. This causes difficulties for seismic investigations of tectonic structures at depth since the diverse and partially strong upper crustal anisotropy might overprint the signal of deeper anisotropic structures in the mantle. In this study, we characterize the range of elastic anisotropies of deformed crustal rocks in the Alps. Furthermore, we model average elastic anisotropies of these rocks and their changes with increasing depth due to the closure of microcracks. For that, pre-Alpine upper crustal rocks of the Adula Nappe in the central Alps, which were intensely deformed during the Alpine orogeny, were sampled. The two major rock types found are orthogneisses and paragneisses; however, small lenses of metabasites and marbles also occur. Crystallographic preferred orientations (CPOs) and volume fractions of minerals in the samples were measured using time-of-flight neutron diffraction. Combined with single crystal elastic anisotropies these were used to model seismic properties of the rocks. The sample set shows a wide range of different seismic velocity patterns even within the same lithology, due to the microstructural heterogeneity of the deformed crustal rocks. To approximate an average for these crustal units, we picked common CPO types of rock forming minerals within gneiss samples representing the most common lithology. These data were used to determine an average elastic anisotropy of a typical crustal rock within the Alps. Average mineral volume percentages within the gneiss samples were used for the calculation. In addition, ultrasonic anisotropy measurements of the samples at increasing confining pressures were performed. These measurements as well as the microcrack patterns determined in thin sections were used to model the closure of microcracks in the average sample at increasing depth. Microcracks are closed at approximately 740 MPa yielding average elastic anisotropies of 4 % for the average gneiss. This value is an approximation, which can be used for seismic models at a lithospheric scale. At a crustal or smaller scale, however, local variations in lithology and deformation as displayed by the range of elastic anisotropies within the sample set need to be considered. In addition, larger-scale structural anisotropies such as layering, intrusions and brittle faults have to be included in any crustal-scale seismic model.


Solid Earth ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 1211-1232
Author(s):  
Anthony Jourdon ◽  
Charlie Kergaravat ◽  
Guillaume Duclaux ◽  
Caroline Huguen

Abstract. Transform margins represent ∼ 30 % of non-convergent margins worldwide. Their formation and evolution have traditionally been addressed through kinematic models that do not account for the mechanical behaviour of the lithosphere. In this study, we use high-resolution 3D numerical thermo-mechanical modelling to simulate and investigate the evolution of intra-continental strain localization under oblique extension. The obliquity is set through velocity boundary conditions that range from 15∘ (high obliquity) to 75∘ (low obliquity) every 15∘ for rheologies of strong and weak lower continental crust. Numerical models show that the formation of localized strike-slip shear zones leading to transform continental margins always follows a thinning phase during which the lithosphere is thermally and mechanically weakened. For low- (75∘) to intermediate-obliquity (45∘) cases, the strike-slip faults are not parallel to the extension direction but form an angle of 20∘ to 40∘ with the plate motion vector, while for higher obliquities (30∘ to 15∘) the strike-slip faults develop parallel to the extension direction. Numerical models also show that during the thinning of the lithosphere, the stress and strain re-orient while boundary conditions are kept constant. This evolution, due to the weakening of the lithosphere, leads to a strain localization process in three major phases: (1) initiation of strain in a rigid plate where structures are sub-perpendicular to the extension direction; (2) distributed deformation with local stress field variations and formation of transtensional and strike-slip structures; (3) formation of highly localized plate boundaries stopping the intra-continental deformation. Our results call for a thorough re-evaluation of the kinematic approach to studying transform margins.


2021 ◽  
Author(s):  
Ruth Keppler ◽  
Roman Vasin ◽  
Michael Stipp ◽  
Tomás Lokajícek ◽  
Matej Petruzálek ◽  
...  

Abstract. The upper crust within collisional orogens is very heterogeneous both in composition and grade of deformation, leading to very variable physical properties at small scales. This yields difficulties for seismic investigations of tectonic structures at depth since local changes in elastic anisotropy cannot be detected. In this study, we show elastic anisotropies of the range of typical lithologies within deformed upper crustal rocks in the Alps. Furthermore, we aim to model average elastic anisotropies for these rocks and their changes with increasing depth due to the closure of microcracks. We therefore sampled rocks in the Adula Nappe of the central Alps, which is typical for upper crust in collisional orogens. The two major rock types found are orthogneisses and paragneisses, however, small lenses of metabasites and marbles also occur. Crystallographic preferred orientations (CPOs) and volume fractions of minerals in the samples were measured using time-of-flight neutron diffraction. Combined with single crystal elastic anisotropies these were used to model seismic properties of the rocks. The sample set shows a wide range of different seismic velocity patterns even within the same lithology, due to the heterogeneity of deformed upper crust. To approximate an average for these upper crustal units, we picked common CPO types of rock forming minerals within the gneiss samples, which represent the most common lithology. These data were used to determine an average elastic anisotropy of a typical upper crustal rock within the Alps. Average mineral volume percentages within the gneiss samples were used for the calculation. In addition, ultrasonic measurements of elastic anisotropies of the samples at increasing pressures were performed. These measurements, as well as the microcrack pattern determined in thin sections of the samples were used to model the closure of microcracks in the average sample at increasing depth. At ≈740 MPa microcracks are assumed to be closed yielding average elastic anisotropies of 4 % for the average gneiss. This value is an approximation, which can be helpful for seismic models at a lithospheric scale. At a crustal or smaller scale, however, it is an oversimplification and local lithological as well as deformational changes shown by the range of elastic anisotropies within the sample set have to be considered.


2013 ◽  
Vol 10 (3) ◽  
pp. 1529-1541 ◽  
Author(s):  
N. Wright ◽  
S. Zahirovic ◽  
R. D. Müller ◽  
M. Seton

Abstract. A variety of paleogeographic reconstructions have been published, with applications ranging from paleoclimate, ocean circulation and faunal radiation models to resource exploration; yet their uncertainties remain difficult to assess as they are generally presented as low-resolution static maps. We present a methodology for ground-truthing the digital Palaeogeographic Atlas of Australia by linking the GPlates plate reconstruction tool to the global Paleobiology Database and a Phanerozoic plate motion model. We develop a spatio-temporal data mining workflow to validate the Phanerozoic Palaeogeographic Atlas of Australia with paleoenvironments derived from fossil data. While there is general agreement between fossil data and the paleogeographic model, the methodology highlights key inconsistencies. The Early Devonian paleogeographic model of southeastern Australia insufficiently describes the Emsian inundation that may be refined using biofacies distributions. Additionally, the paleogeographic model and fossil data can be used to strengthen numerical models, such as the dynamic topography and the associated inundation of eastern Australia during the Cretaceous. Although paleobiology data provide constraints only for paleoenvironments with high preservation potential of organisms, our approach enables the use of additional proxy data to generate improved paleogeographic reconstructions.


1980 ◽  
Vol 17 (1) ◽  
pp. 60-71 ◽  
Author(s):  
Jean-Claude Mareschal ◽  
Gordon F. West

A tectonic model that attempts to explain common features of Archean geology is investigated. The model supposes the accumulation, by volcanic eruptions, of a thick basaltic pile on a granitoid crust. The thermal blanketing effect of this lava raises the temperature of the granitic crust and eventually softens it enough that gravitational slumping and downfolding of the lava follows.Numerical models of the thermal and mechanical evolution of a granitoid crust covered with a thick lava sequence indicate that such an evolution is possible when reasonable assumptions are made about the temperature dependence of the viscosity in crustal rocks. These models show the lava sinking in relatively narrow regions while wider granite diapirs appear in between. The convection produces strong horizontal temperature gradients that may cause lateral changes in metamoprhic facies. A one order of magnitude drop in accumulated strain occurs between the granite–basalt interface and the center of the granite diaper at a depth of 10–15 km.


2021 ◽  
Author(s):  
Anne Paul ◽  
Ahmed Nouibat ◽  
Liang Zhao ◽  
Stefano Solarino ◽  
Stéphane Schwartz ◽  
...  

<p>The CIFALPS receiver-function (RF) profile in the southwestern Alps provided the first seismological evidence of continental subduction in the Alps, with the detection of waves converted on the European Moho at 75-80 km depth beneath the western edge of the Po basin (Zhao et al., 2015). To complement the CIFALPS profile and enhance our knowledge of the lithospheric structure of the Western Alps, we installed CIFALPS2, a temporary network of 55 broadband seismic stations that operated for ~14 months (2018-2019) across the North-Western Alps (Zhao et al., 2018). The CIFALPS2 line runs from the Eastern Massif Central to the Ligurian coast, across the Mont-Blanc and Gran Paradiso massifs and the Ligurian Alps. Seismic stations were installed along a quasi-linear profile with a spacing of 7-10 km.</p><p>We will show 2 receiver-function CCP (common-conversion point) depth-migrated sections along the CIFALPS2 profile, the first one across the Alps, and the second one across the Ligurian Alps and the Po basin. The time-to-depth migration of RF data is based on the new 3-D Vs model of the Greater Alpine region derived by Nouibat et al. (2021) using transdimensional ambient noise tomography on a large dataset including the AlpArray seismic network. Depth sections across the Vs model are also useful for interpreting the RF CCP sections as they have striking similarities.</p><p>The images of the lithospheric structure of the NW Alps along CIFALPS2 are surprisingly different from those of the SW Alps along CIFALPS. The deepest P-to-S converted phases on the European Moho are detected at 60-65 km depth beneath the Ivrea-Verbano zone, that is 15 km less than on CIFALPS. The negative polarity converted phase interpreted as the base of the Ivrea body mantle flake on the CIFALPS section is still visible on CIFALPS2, but with a lower amplitude. The RF section confirms the existence of a jump of the European Moho of ~10 km amplitude in less than 10 km distance, which is located within a few km from the western boundary of the Mont Blanc external crystalline massif. All these observations are confirmed by the Vs model that also displays a less deep continental subduction than on CIFALPS, weaker S-wave velocities in the Ivrea body wedge, and the jump of the European Moho.</p><p>The Moho beneath the Ligurian Alps is detected at 25-30 km depth both on the RF and on the Vs depth sections. Moving northwards, this Ligurian Moho is separated from the Adriatic Moho by a puzzling S-dipping set of P-to-S converted waves with negative polarity. The crust of the Ligurian Alps is characterized by a set of north-dipping negative-polarity converted waves at 10 to 20 km depth beneath the Valosio massif, which is a small internal crystalline massif of (U)HP metamorphic rocks located north of Voltri. The similarity of this set of negative-polarity conversions to the one observed beneath the Dora Maira massif on the CIFALPS profile suggests that it may be a relic of the Alpine structure overprinted by the opening of the Ligurian sea.</p>


Sign in / Sign up

Export Citation Format

Share Document