horizontal temperature gradients
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 3)

H-INDEX

14
(FIVE YEARS 0)

Author(s):  
Hamed Farmahini Farahani ◽  
Tatsunori Hayashi ◽  
Hirotaka Sakaue ◽  
Ali S. Rangwala

A series of experiments were conducted to investigate the flow field of a top-heated liquid fuel adjacent to an ice block. The experimental setup consisted of a borosilicate container containing an ice wall and a layer of n-heptane heated from above. Particle Image Velocimetry (PIV) and Background Oriented Schlieren (BOS) measurements were conducted on the liquid -phase. PIV measurements showed a surface flow toward the ice caused by surface -tension forces, which is driven by the horizontal temperature gradients on the liquid surface. A recirculation zone was observed under the free surface and near the ice. The combination of the two flow patterns caused lateral intrusion in the ice, instead of a uniform melting across ice surface. BOS measurements indicated presence of density gradients below the free surface of n-heptane and in regions near the ice block. These density gradients were created by local small-scale temperature gradients. The current experiments were conducted to explore the processes that influence the ice melting by immiscible liquid layers.


2021 ◽  
Vol 13 (3) ◽  
pp. 168781402110034
Author(s):  
Asad Rehman ◽  
Ishtiaq Ali ◽  
Saqib Zia ◽  
Shamsul Qamar

In this article, fifth order well-balanced finite volume multi-resolution weighted essentially non-oscillatory (FV MR-WENO) schemes are constructed for solving one-dimensional and two-dimensional Ripa models. The Ripa system generalizes the shallow water model by incorporating horizontal temperature gradients. The presence of temperature gradients and source terms in the Ripa models introduce difficulties in developing high order accurate numerical schemes which can preserve exactly the steady-state conditions. The proposed numerical methods are capable to exactly preserve the steady-state solutions and maintain non-oscillatory property near the shock transitions. Moreover, in the procedure of derivation of the FV MR-WENO schemes unequal central spatial stencils are used and linear weights can be chosen any positive numbers with only restriction that their total sum is one. Various numerical test problems are considered to check the validity and accuracy of the derived numerical schemes. Further, the results obtained from considered numerical schemes are compared with those of a high resolution central upwind scheme and available exact solutions of the Ripa model.


Author(s):  
Sidrah Ahmed

AbstractThe kinetic flux vector splitting method has been introduced for two-dimensional system of shallow water equations with horizontal temperature gradients. The scheme preserves positivity conditions and resolves different regions of shock waves, rarefaction waves and contact discontinuity with negligible oscillations. The scheme is based on splitting of flux functions of the Ripa model. Moreover Runge-Kutta time stepping technique with MUSCL-type initial reconstruction is used to guarantee higher order accurate solution. The numerical example is taken from already published article. The obtained results reveal the accuracy and robustness of the proposed method.


2017 ◽  
Vol 44 (19) ◽  
pp. 9778-9785 ◽  
Author(s):  
Benjamin H. Hills ◽  
Joel T. Harper ◽  
Neil F. Humphrey ◽  
Toby W. Meierbachtol

2017 ◽  
Vol 826 ◽  
pp. 553-582 ◽  
Author(s):  
Arman Abtahi ◽  
J. M. Floryan

An analysis of natural convection in a horizontal, geometrically non-uniform slot exposed to spatially non-uniform heating has been carried out. The upper plate is smooth and isothermal, and the lower plate has sinusoidal corrugations with a sinusoidal temperature distribution. The distributions of the non-uniformities are characterized in terms of the wavenumber$\unicode[STIX]{x1D6FC}$and their relative position is expressed in terms of the phase difference$\unicode[STIX]{x1D6FA}_{TL}$. The analysis is limited to heating conditions which do not give rise to secondary motions in the absence of the non-uniformities. The heating creates horizontal temperature gradients which lead to the formation of vertical and horizontal pressure gradients which drive the motion regardless of the intensity of the heating. When the hot spots (points of maximum temperature) overlap either with the corrugation tips or with the corrugation bottoms, convection assumes the form of pairs of counter-rotating rolls whose size is dictated by the heating/corrugation wavelengths. The formation of a net horizontal flow, referred to as thermal drift, is observed for all other relative positions of the hot spots and corrugation tips. Both periodic heating as well as periodic corrugations are required for the formation of this drift, which can be directed in the positive as well as in the negative horizontal directions depending on the phase difference between the heating and corrugation patterns. The most intense convection and the largest drift occur for wavelengths comparable to the slot height, and their intensities increase proportionally to the heating intensity as well as proportionally to the corrugation amplitude, with the drift being a very strong function of the phase difference. Convection creates forces at the plates which would cause horizontal displacement of the corrugated plate and deform the corrugations if such effects were allowed. Tangential forces generated by the uniform heating always contribute to the corrugation buildup while similar forces generated by the periodic heating contribute to the buildup only when the hot spots overlap with the upper part of the corrugation. The processes described above are qualitatively similar for all Prandtl numbers$Pr$, with the intensity of convection and the magnitude of the drift increasing with a reduction in$Pr$.


2016 ◽  
Vol 29 (13) ◽  
pp. 4977-4993 ◽  
Author(s):  
Alex D. Crawford ◽  
Mark C. Serreze

Abstract Extratropical cyclone activity over the central Arctic Ocean reaches its peak in summer. Previous research has argued for the existence of two external source regions for cyclones contributing to this summer maximum: the Eurasian continent interior and a narrow band of strong horizontal temperature gradients along the Arctic coastline known as the Arctic frontal zone (AFZ). This study incorporates data from an atmospheric reanalysis and an advanced cyclone detection and tracking algorithm to critically evaluate the relationship between the summer AFZ and cyclone activity in the central Arctic Ocean. Analysis of both individual cyclone tracks and seasonal fields of cyclone characteristics shows that the Arctic coast (and therefore the AFZ) is not a region of cyclogenesis. Rather, the AFZ acts as an intensification area for systems forming over Eurasia. As these systems migrate toward the Arctic Ocean, they experience greater deepening in situations when the AFZ is strong at midtropospheric levels. On a broader scale, intensity of the summer AFZ at midtropospheric levels has a positive correlation with cyclone intensity in the Arctic Ocean during summer, even when controlling for variability in the northern annular mode. Taken as a whole, these findings suggest that the summer AFZ can intensify cyclones that cross the coast into the Arctic Ocean, but focused modeling studies are needed to disentangle the relative importance of the AFZ, large-scale circulation patterns, and topographic controls.


Author(s):  
Raymond T. Pierrehumbert ◽  
Feng Ding

The diversity of characteristics for the host of recently discovered exoplanets opens up a great deal of fertile new territory for geophysical fluid dynamics, particularly when the fluid flow is coupled to novel thermodynamics, radiative transfer or chemistry. In this paper, we survey one of these new areas—the climate dynamics of atmospheres with a non-dilute condensible component, defined as the situation in which a condensible component of the atmosphere makes up a substantial fraction of the atmospheric mass within some layer. Non-dilute dynamics can occur for a wide range of condensibles, generically applying near both the inner and the outer edges of the conventional habitable zone and in connection with runaway greenhouse phenomena. It also applies in a wide variety of other planetary circumstances. We first present a number of analytical results developing some key features of non-dilute atmospheres, and then show how some of these features are manifest in simulations with a general circulation model adapted to handle non-dilute atmospheres. We find that non-dilute atmospheres have weak horizontal temperature gradients even for rapidly rotating planets, and that their circulations are largely barotropic. The relative humidity of the condensible component tends towards 100% as the atmosphere becomes more non-dilute, which has important implications for runaway greenhouse thresholds. Non-dilute atmospheres exhibit a number of interesting organized convection features, for which there is not yet any adequate theoretical understanding.


Sign in / Sign up

Export Citation Format

Share Document