Trace metals load on beached microplastics in the anthropogenically influenced estuarine environment - Croatian middle Adriatic

Author(s):  
Vlado Cuculić ◽  
Hana Fajković ◽  
Željko Kwokal ◽  
Renata Matekalo

<p>Marine plastic litter can be a significant vector for ecotoxic trace metals into coastal areas. Eventually, it can be burried in sediment and in accumulated material on the beach with organic and inorganic material on its surface. In order to analyze the trace metal quantities (Cd, Cu, Pb and Zn) on different size particles in an anthropogenically affected environment, microplastics were sampled from the accumulated material on the Mala Martinska natural beach (Šibenik Bay, Croatia) in September 2019. The city of Šibenik and the Šibenik Bay are located in the lower part of the Krka River estuary (middle Adriatic). It is the main Croatian port for the phosphate ore import. Also, it was found earlier that Šibenik Bay was polluted by the ex-ferromanganese industry located in it, and the industrial slag spreading around the factory was the significant supply of trace metals in the Bay. The concentrations of dissolved and total metals in the surface seawater at the same location and at the reference point (coastal surface seawater at Jadrija, ~4 km SE from the sampling site) were determined in February and June 2020.</p><p>The collected material was sieved through a metal sieve with a 4 mesh size, resulting in 4 bulk (mixed microplastics) aliquots (> 4mm; 4-2 mm; 2-1 mm; 1-0.250 mm). From each of of the 4 bulk aliquots, subsamples of mixed plastics and polystyrene (PS) particles were isolated, resulting in 8 subsamples in total. The type of plastic particles (> 4mm; 4-2 mm and PS) was determined by FTIR spectroscopy performed on Bruker Tensor 27 in the region from 4000-400 cm<sup>-1</sup>. Trace metal concentrations on such defined particles and in seawater samples were determined using differential pulse anodic stripping voltammetry (DPASV) by Metrohm Autolab modular potentiostat/galvanostat Autolab PGSTAT204, connected with a three-electrode system Metrohm 663 VA STAND (Utrecht, The Netherlands). Working electrode used was static mercury drop electrode (SMDE).</p><p>In general, the amounts of trace metals associated with the plastic particles (Cd 0.02-0.35 µg/g; Pb 1.1-34.1 µg/g; Cu 1.7-32.9 µg/g and Zn 6-147 µg/g) were in the range of unpolluted and moderately affected sediments in the Adriatic Sea. The mass fractions of all tested trace metals increase with decreasing plastic particle size, probably due to the larger specific surface areas on the smaller particles. That was not the case for the plastic particles larger than 4 mm, both in mixed and PS samples, where the amounts of metal were higher compared to particles of 4-2 mm and 2-1 mm. Furthermore, all metals except cadmium showed a higher affinity for PS in comparison with mixed plastic samples of the same particle sizes (up to order of magnitude higher metal amounts), due to the PS highly developed specific surface area. In order to better understand the mechanism of association of trace metals with microplastics under different environmental conditions, further investigations are needed.</p><p>This work has been fully supported by Croatian Science Foundation under the project lP-2019-04-5832.</p>

2021 ◽  
Author(s):  
Hana Fajković ◽  
Neven Cukrov ◽  
Željko Kwokal ◽  
Kristina Pikelj ◽  
Laura Huljek ◽  
...  

<p>The aim of the study was to determine the correlation of metals on floating marine litter and weathered microplastic samples from the pristine area. Sampled were collected from the accumulated material on the natural beach in Mala Stupica Cove (Žirje Island, Croatia) in June 2020. In addition to weathered microplastic, the concentrations of dissolved metals in the seawater, at the same location were determined. According to these measurements, the sampling site can be considered pristine, with Cd and Pb concentrations as background values and Zn and Cu as elements that have no toxic effect, based on the classification proposed by Bakke et al., (2010). The metals of interest due to their high toxicity were Zn, Cd, Pb, and Cu.</p><p>After sampling, the collected material was sieved through a metal sieve with a 4 mesh size, resulting in 4 subsamples (>4 mm; 4-2 mm; 2-1 mm; 1-0.250 mm). The type of plastic particles from subsample >4 mm was determined by FTIR spectroscopy performed on Bruker Tensor 27 in the region from 400-4000 cm<sup>-1</sup>. On such defined particles and in the seawater sample, trace metal concentrations were determined by the electrochemical method differential pulse anodic stripping voltammetry (DPASV) with standard addition method by Metrohm Autolab modular potentiostat/galvanostat Autolab PGSTAT204. A static mercury drop electrode (SMDE) was used as the working electrode.</p><p>Plastic particles were isolated from additional two fractions (2-1 mm and 1-0.250 mm) as bulk samples, but without polystyrene, and the metal concentration was also determined using the same method. Due to the particle size, the type of plastic was not determined. Additional analyzes of metal concentrations on a defined and isolated polystyrene particles (PS) from a subsample (4-2 mm) and (2-1 mm) were also performed.</p><p>By analogy with sediment particles, one would expect smaller microplastic particles to have higher metal concentrations due to their larger specific surface area, but this was not observed in this study. The metal concentration varied with the type of plastic, and from the observed results, plastics could be ranked according to their affinity for the analyzed metals, as follows: polystyrene (PS)>Polypropylene (PP)>Low-density polyethylene (LDPE). According to an average concentration of all analyzed samples defined as LDPE, Zn could be single out as an element with around 7-time higher affinity for LDPE than other elements (Cd, Pb, and Cu). For samples defined as PP, the highest affinity is observed for Pb, even 30 times higher than in LDPE, followed by Zn and Cu, while Cd has similar values as in LDPE.  For PS samples affinity of all elements is higher in comparison with the LDPE and PP, as follows: Pb>Cu> Zn>Cd, with a concentration of Pb 2.5 times higher than in PP and even 88 times higher than in LDPE.</p><p> A general conclusion could be drawn, but the observed wide ranges indicate the need for additional research to determine the relationship between the degree and type of weathering with the associated metals.</p><p>This work has been fully supported by Croatian Science Foundation under the project lP-2019-04-5832.</p>


1977 ◽  
Vol 60 (1) ◽  
pp. 239-240
Author(s):  
Walter Holak

Abstract The use of a programmable furnace in preparing samples for determining cadmium, lead, copper, and zinc by differential pulse anodic stripping voltammetry or atomic absorption spectrophotometry is convenient and timesaving. Recovery data for these 4 metals in various foods (tuna, sardines, and milk) were 93— 96% for 0.01—1 ppm cadmium, 96—114% for 0.05—5 ppm lead, 100—108% for 2—10 ppm copper, and 97% for 10 ppm zinc.


Sign in / Sign up

Export Citation Format

Share Document