Volcano flank dynamics: breakthroughs delivered by space technologies

Author(s):  
Giuseppe Puglisi

<p>Flank dynamics is an ensemble of phenomena observable in many volcanoes, caused by shallow (e.g. material erosion) or deep sources (e.g. tectonics or magma dynamics). Whatever its origin, the most evident effect of flank dynamics is the continuous/steady movement of the flanks of the volcano. The interaction between gravity, tectonics and magma dynamics produce deep-seated, steady-state movement of large sectors of the volcanoes (sometimes called “persistent flank motion” or “volcanic spreading”), whose effects may be severe, either when it evolves in sudden transient acceleration (producing flank collapses or landslides) or when the steady movement damages essential infrastructures or inhabited areas.</p><p>Before space-based observations begun, the knowledge of flank dynamics was limited in terms of areal dimension, magnitude and evolution. Since the 90s, first the GPS, then the SAR interferometry have produced a dramatic shift in the capacity to measure ground deformations at the scale of the volcano. GPS and InSAR now give a complete picture of the persistent flank motion and allow inferring the processes inducing this phenomenon. All this impacts the ability to improve the Hazard Assessment and Risk Reduction related to the persistent flank dynamics. Some worldwide examples are reported in the presentation, among of which from Supersite volcanoes. In particular, Mt. Etna offers the opportunity to make some considerations on the benefit of these improvements in hazard assessment of the flank dynamics.</p>

1999 ◽  
Vol 45 (151) ◽  
pp. 533-538 ◽  
Author(s):  
Niels Reeh ◽  
Søren Nørvang Madsen ◽  
Johan Jakob Mohr

AbstractUntil now, an assumption of surface-parallel glacier flow has been used to express the vertical velocity component in terms of the horizontal velocity vector, permitting all three velocity components to be determined from synthetic aperture radar interferometry. We discuss this assumption, which neglects the influence of the local mass balance and a possible contribution to the vertical velocity arising if the glacier is not in steady state. We find that the mass-balance contribution to the vertical surface velocity is not always negligible as compared to the surface-slope contribution. Moreover, the vertical velocity contribution arising if the ice sheet is not in steady state can be significant. We apply the principle of mass conservation to derive an equation relating the vertical surface velocity to the horizontal velocity vector. This equation, valid for both steady-state and non-steady-state conditions, depends on the ice-thickness distribution. Replacing the surface-parallel-flow assumption with a correct relationship between the surface velocity components requires knowledge of additional quantities such as surface mass balance or ice thickness.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2684
Author(s):  
Chandrakanta Ojha ◽  
Adele Fusco ◽  
Innocenzo M. Pinto

This paper addresses the problem of interferometric noise reduction in Synthetic Aperture Radar (SAR) interferometry based on sparse and redundant representations over a trained dictionary. The idea is to use a Proximity-based K-SVD (ProK-SVD) algorithm on interferometric data for obtaining a suitable dictionary, in order to extract the phase image content effectively. We implemented this strategy on both simulated as well as real interferometric data for the validation of our approach. For synthetic data, three different training dictionaries have been compared, namely, a dictionary extracted from the data, a dictionary obtained by a uniform random distribution in [ − π , π ] , and a dictionary built from discrete cosine transform. Further, a similar strategy plan has been applied to real interferograms. We used interferometric data of various SAR sensors, including low resolution C-band ERS/ENVISAT, medium L-band ALOS, and high resolution X-band COSMO-SkyMed, all over an area of Mt. Etna, Italy. Both on simulated and real interferometric phase images, the proposed approach shows significant noise reduction within the fringe pattern, without any considerable loss of useful information.


1999 ◽  
Vol 45 (151) ◽  
pp. 533-538 ◽  
Author(s):  
Niels Reeh ◽  
Søren Nørvang Madsen ◽  
Johan Jakob Mohr

AbstractUntil now, an assumption of surface-parallel glacier flow has been used to express the vertical velocity component in terms of the horizontal velocity vector, permitting all three velocity components to be determined from synthetic aperture radar interferometry. We discuss this assumption, which neglects the influence of the local mass balance and a possible contribution to the vertical velocity arising if the glacier is not in steady state. We find that the mass-balance contribution to the vertical surface velocity is not always negligible as compared to the surface-slope contribution. Moreover, the vertical velocity contribution arising if the ice sheet is not in steady state can be significant. We apply the principle of mass conservation to derive an equation relating the vertical surface velocity to the horizontal velocity vector. This equation, valid for both steady-state and non-steady-state conditions, depends on the ice-thickness distribution. Replacing the surface-parallel-flow assumption with a correct relationship between the surface velocity components requires knowledge of additional quantities such as surface mass balance or ice thickness.


2004 ◽  
Vol 30 (4) ◽  
pp. 333-343 ◽  
Author(s):  
G.X. Liu ◽  
X.L. Ding ◽  
Z.L. Li ◽  
Z.W. Li ◽  
Y.Q. Chen ◽  
...  

1995 ◽  
Vol 132 (1-4) ◽  
pp. 25-41 ◽  
Author(s):  
Michel Condomines ◽  
Jean-Claude Tanguy ◽  
Vale´rie Michaud
Keyword(s):  

2014 ◽  
Vol 611-612 ◽  
pp. 1311-1318
Author(s):  
Lionel Fourment ◽  
Ugo Ripert

For many material forming processes steady-state formulations allows reducing numerical simulation time by an order of magnitude with respect to more conventional approaches. In the presented approach, the steady regime is iteratively computed by a free surface algorithm that alternates computations of the metal forming flow over a known geometry and known contact surfaces, with computations of domain corrections to satisfy free and contact surface conditions. Several weak formulations of the second problem equations are investigated to get a robust algorithm suitable for parallel computations with unstructured meshes. Analytical problems show the necessity to introduce an upwind shift within these weak formulations. Contact inequations enforces this necessity by requiring a more dramatic shift. A robust and accurate algorithm is so obtained, which is successfully applied to 3D complex metal forming processes like rolling. In the wire drawing application, computational time is reduced by more than fifteen with respect to the incremental calculation of the steady-state.


2016 ◽  
Vol 41 (1) ◽  
pp. 44-67 ◽  
Author(s):  
Amy Donovan

This paper discusses disaster risk reduction (DRR) in the context of emerging geographical ideas about topologies and assemblages. It focuses on the role of expert advice in DRR and the resulting political and epistemological issues. The critical geography of disasters still struggles to communicate with persistent scientific technical-rational approaches to hazard assessment. Furthermore, recent studies have shown the potential for expert advice to be (mis)used for political purposes. Assemblage theory might be useful in opening up this hybrid area of research, as it allows a nuanced view of disasters and DRR that can incorporate complex human-environmental relationships and diverse knowledges.


2009 ◽  
Vol 61 (3) ◽  
pp. 477-489 ◽  
Author(s):  
Andrea Cannata ◽  
Gaetano Giudice ◽  
Sergio Gurrieri ◽  
Placido Montalto ◽  
Salvatore Alparone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document