The MLT distribution and detailed structure of ring current:  MMS observations

Author(s):  
Xin Tan ◽  
Malcolm Dunlop ◽  
Xiangcheng Dong ◽  
Yanyan Yang ◽  
Christopher Russell

<p>The ring current is an important part of the large-scale magnetosphere-ionosphere current system; mainly concentrated in the equatorial plane, between 2-7 R<sub>E</sub>, and strongly ordered between ± 30 ° latitude. The morphology of ring current directly affects the geomagnetic field at low to middle latitudes. Rapid changes in ring current densities can occur during magnetic storms/sub-storms. Traditionally, the Dst index is used to characterize the intensity of magnetic storms and to reflect the variation of ring current intensity, but this index does not reflect the MLT distribution of ring current. In fact, the ring current has significant variations with MLT, depending on geomagnetic activity, due to the influence of multiple factors; such as, the partial ring current, region 1/region 2 field-aligned currents, the magnetopause current and sub-storm cycle (magnetotail current). The form of the ring current has been inferred from the three-dimensional distribution of ion differential fluxes from neutral atom imaging; however, this technique can not directly obtain the current density distribution (as can be obtained using multi-spacecraft in situ data). Previous in situ estimates of current density have used: Cluster, THEMIS and other spacecraft groups to study the distribution of the ring current for limited ranges of either radial profile, or MLT and MLAT variations. Here, we report on an extension to these studies using FGM data from MMS obtained during the period September 1, 2015 to December 31, 2016, when the MMS orbit and configuration provided good coverage. We employ the curlometer method to calculate the current density, statistically, to analysis the MLT distribution according to different geomagnetic conditions. Our results show the clear asymmetry of the ring current and its different characteristics under different geomagnetic conditions.</p>

2014 ◽  
Vol 8 (1) ◽  
pp. 320-325 ◽  
Author(s):  
Zhangming Li ◽  
Na Qi ◽  
Zhibin Masumi ◽  
Weidi Lin

Basic parameters relations among CPT parameters, un-drained strength and other mechanical parameters of soft clay are presented based on an elastic-plastic solution for cylindrical cavity expansion for soil investigation in energy engineering. The relation between CPT parameters and shear strength from vane test is also presented based on the result. Thus, the CPT parameters can be determined directly by elastic parameters and shear strength or vane shear parameters and vice versa. That makes it possible to save the high test costs and provide theoretical formulas to avoid some tests which are limited due to the site and/or other condition. Results are compared between the relations and in situ data at a large-scale project in the Pearl River Delta. The results showed consistency between the relation and in situ data.


2011 ◽  
Vol 29 (9) ◽  
pp. 1655-1662 ◽  
Author(s):  
Q.-H. Zhang ◽  
M. W. Dunlop ◽  
M. Lockwood ◽  
R. Holme ◽  
Y. Kamide ◽  
...  

Abstract. Extending previous studies, a full-circle investigation of the ring current has been made using Cluster 4-spacecraft observations near perigee, at times when the Cluster array had relatively small separations and nearly regular tetrahedral configurations, and when the Dst index was greater than −30 nT (non-storm conditions). These observations result in direct estimations of the near equatorial current density at all magnetic local times (MLT) for the first time and with sufficient accuracy, for the following observations. The results confirm that the ring current flows westward and show that the in situ average measured current density (sampled in the radial range accessed by Cluster ~4–4.5 RE) is asymmetric in MLT, ranging from 9 to 27 nA m−2. The direction of current is shown to be very well ordered for the whole range of MLT. Both of these results are in line with previous studies on partial ring extent. The magnitude of the current density, however, reveals a distinct asymmetry: growing from 10 to 27 nA m−2 as azimuth reduces from about 12:00 MLT to 03:00 and falling from 20 to 10 nA m−2 less steadily as azimuth reduces from 24:00 to 12:00 MLT. This result has not been reported before and we suggest it could reflect a number of effects. Firstly, we argue it is consistent with the operation of region-2 field aligned-currents (FACs), which are expected to flow upward into the ring current around 09:00 MLT and downward out of the ring current around 14:00 MLT. Secondly, we note that it is also consistent with a possible asymmetry in the radial distribution profile of current density (resulting in higher peak at ~4–4.5 RE). We note that part of the enhanced current could reflect an increase in the mean AE activity (during the periods in which Cluster samples those MLT).


2012 ◽  
Vol 30 (3) ◽  
pp. 597-611 ◽  
Author(s):  
S. Grimald ◽  
I. Dandouras ◽  
P. Robert ◽  
E. Lucek

Abstract. Knowledge of the inner magnetospheric current system (intensity, boundaries, evolution) is one of the key elements for the understanding of the whole magnetospheric current system. In particular, the calculation of the current density and the study of the changes in the ring current is an active field of research as it is a good proxy for the magnetic activity. The curlometer technique allows the current density to be calculated from the magnetic field measured at four different positions inside a given current sheet using the Maxwell-Ampere's law. In 2009, the CLUSTER perigee pass was located at about 2 RE allowing a study of the ring current deep inside the inner magnetosphere, where the pressure gradient is expected to invert direction. In this paper, we use the curlometer in such an orbit. As the method has never been used so deep inside the inner magnetosphere, this study is a test of the curlometer in a part of the magnetosphere where the magnetic field is very high (about 4000 nT) and changes over small distances (ΔB = 1nT in 1000 km). To do so, the curlometer has been applied to calculate the current density from measured and modelled magnetic fields and for different sizes of the tetrahedron. The results show that the current density cannot be calculated using the curlometer technique at low altitude perigee passes, but that the method may be accurate in a [3 RE; 5 RE] or a [6 RE; 8.3 RE] L-shell range. It also demonstrates that the parameters used to estimate the accuracy of the method are necessary, but not sufficient conditions.


2014 ◽  
Vol 44 (1) ◽  
pp. 467-474 ◽  
Author(s):  
Lin Qu ◽  
Ning Zhao ◽  
Haitao Ma ◽  
Huijing Zhao ◽  
Mingliang Huang

2007 ◽  
Vol 25 (6) ◽  
pp. 1365-1389 ◽  
Author(s):  
W. Baumjohann ◽  
A. Roux ◽  
O. Le Contel ◽  
R. Nakamura ◽  
J. Birn ◽  
...  

Abstract. The paper tries to sort out the specific signatures of the Near Earth Neutral Line (NENL) and the Current Disruption (CD) models, and looks for these signatures in Cluster data from two events. For both events transient magnetic signatures are observed, together with fast ion flows. In the simplest form of NENL scenario, with a large-scale two-dimensional reconnection site, quasi-invariance along Y is expected. Thus the magnetic signatures in the S/C frame are interpreted as relative motions, along the X or Z direction, of a quasi-steady X-line, with respect to the S/C. In the simplest form of CD scenario an azimuthal modulation is expected. Hence the signatures in the S/C frame are interpreted as signatures of azimuthally (along Y) moving current system associated with low frequency fluctuations of Jy and the corresponding field-aligned currents (Jx). Event 1 covers a pseudo-breakup, developing only at high latitudes. First, a thin (H≈2000 km≈2ρi, with ρi the ion gyroradius) Current Sheet (CS) is found to be quiet. A slightly thinner CS (H≈1000–2000 km≈1–2ρi), crossed about 30 min later, is found to be active, with fast earthward ion flow bursts (300–600 km/s) and simultaneous large amplitude fluctuations (δB/B~1). In the quiet CS the current density Jy is carried by ions. Conversely, in the active CS ions are moving eastward; the westward current is carried by electrons that move eastward, faster than ions. Similarly, the velocity of earthward flows (300–600 km/s), observed during the active period, maximizes near or at the CS center. During the active phase of Event 1 no signature of the crossing of an X-line is identified, but an X-line located beyond Cluster could account for the observed ion flows, provided that it is active for at least 20 min. Ion flow bursts can also be due to CD and to the corresponding dipolarizations which are associated with changes in the current density. Yet their durations are shorter than the duration of the active period. While the overall ∂Bz∂t is too weak to accelerate ions up to the observed velocities, short duration ∂Bz∂t can produce the azimuthal electric field requested to account for the observed ion flow bursts. The corresponding large amplitude perturbations are shown to move eastward, which suggests that the reduction in the tail current could be achieved via a series of eastward traveling partial dipolarisations/CD. The second event is much more active than the first one. The observed flapping of the CS corresponds to an azimuthally propagating wave. A reversal in the proton flow velocity, from −1000 to +1000 km/s, is measured by CODIF. The overall flow reversal, the associated change in the sign of Bz and the relationship between Bx and By suggest that the spacecraft are moving with respect to an X-line and its associated Hall-structure. Yet, a simple tailward retreat of a large-scale X-line cannot account for all the observations, since several flow reversals are observed. These quasi-periodic flow reversals can also be associated with an azimuthal motion of the low frequency oscillations. Indeed, at the beginning of the interval By varies rapidly along the Y direction; the magnetic signature is three-dimensional and essentially corresponds to a structure of filamentary field-aligned current, moving eastward at ~200 km/s. The transverse size of the structure is ~1000 km. Similar structures are observed before and after. These filamentary structures are consistent with an eastward propagation of an azimuthal modulation associated with a current system Jy, Jx. During Event 1, signatures of filamentary field-aligned current structures are also observed, in association with modulations of Jy. Hence, for both events the structure of the magnetic fields and currents is three-dimensional.


Author(s):  
Kaspar Andreas Friedrich ◽  
Till Kaz ◽  
Stefan Scho¨nbauer ◽  
Heinz Sander

During fuel cell operation the electrochemical activity often is not homogenous over the electrode area. This may be caused by an non-uniform water content in the membrane, an inhomogeneous temperature distribution, and reactant gradients in the cell. Consequently a variation of the current density over the cell area occurs which tends to result in inferior performance. For in situ measurements of the current density distribution in fuel cell stacks a segmented bipolar plate was developed. The segmented bipolar plate was first tested in single cells with stack endplates to verify the function of all components. The tests showed that the measurement tool works very reliable and accurate. The insight in an operating fuel cell stack via current density distribution measurement is very helpful to investigate interactions between cells. Results can be used to validate models and to optimise stack components, e.g. flow field and manifold design, as well as to detect the best stack operating conditions. By applying segmented bipolar plates as sensor plates for stack system controls an improved performance, safe operation and longer life cycles can be achieved. The developed segmented bipolar plates with integrated current sensors were used to assemble a short stack consisting of 3 cells; each of them having an active area of 25cm2 divided into 49 segments. The design of the bipolar plate proofed very suitable for easy assembling of single cells and stacks. First measurement results show that different current distributions can appear in the cells and these can vary from cell to cell, depending on the operating conditions of the stack. Electrical coupling between the cells was investigated and found to be only marginal for the assembly used.


2009 ◽  
Vol 39 (9) ◽  
pp. 2230-2246 ◽  
Author(s):  
Vasiliy Vlasenko ◽  
Jose C. Sanchez Garrido ◽  
Nataliya Stashchuk ◽  
Jesus Garcia Lafuente ◽  
Miguel Losada

Abstract The modeling of large-amplitude internal waves (LAIWs) propagating in the Strait of Gibraltar is carried out using a fully nonlinear nonhydrostatic numerical model. The focus of the modeling efforts was on three-dimensional peculiarities of LAIW evolution, namely, cross-strait variability, interaction with lateral boundaries (including wave breaking and water mixing), radiation of secondary waves from orographic features, and interaction of secondary scattered internal waves. The along-channel propagation of packets of LAIWs reveals remarkable three-dimensional behavior. Due to the Coriolis force and multiple reflections from the lateral boundaries, the largest leading LAIW loses its energy much faster than that in the packet tail, which captures the scattered energy from the leading wave as it propagates and grows in amplitude. As a result of the energy transfer, the initially rank-ordered wave packet loses its regular structure to evolve into a non-rank-ordered wave train. In situ data collected in the eastern part of the Strait of Gibraltar confirm the idea that the non-rank-ordered structure is a common feature of internal wave packets emerging from the strait into the Alboran Sea.


2004 ◽  
Vol 151 (9) ◽  
pp. D78 ◽  
Author(s):  
M. Purcar ◽  
B. Van den Bossche ◽  
L. Bortels ◽  
J. Deconinck ◽  
G. Nelissen

Sign in / Sign up

Export Citation Format

Share Document