scholarly journals A means-corrected estimate for the Arctic sea-ice volume in 1990–2019

Author(s):  
Petteri Uotila ◽  
Joula Siponen ◽  
Eero Rinne ◽  
Steffen Tietsche

<p>Decadal changes in sea-ice thickness are one of the most visible signs of climate variability and change. To gain a comprehensive understanding of mechanisms involved, long time series, preferably with good uncertainty estimates, are needed. Importantly, the development of accurate predictions of sea ice in the Arctic requires good observational products. To assist this, a new sea-ice thickness product by ESA Climate Change Initiative (CCI) is compared to a set of five ocean reanalysis (ECCO-V4r4, GLORYS12V1, ORAS5 and PIOMAS).</p><p>The CCI product is based on two satellite altimetry missions, CryoSat-2 and ENVISAT, which are combined to the longest continuous satellite altimetry time series of Arctic-wide sea-ice thickness, 2002–2017. The CCI product performs well in the validation of the reanalyses: overall root-mean-square difference (RMSD) between monthly sea-ice thickness from CCI and the reanalyses ranges from 0.4–1.2 m. The differences are a sum of reanalysis biases, such as incorrect physics or forcing, as well as uncertainties in satellite altimetry, such as the snow climatology used in the thickness retrieval.</p><p>The CCI and reanalysis basin-scale sea-ice volumes have a good match in terms of year-to-year variability and long-term trends but rather different monthly mean climatologies. These findings provide a rationale to construct a multi-decadal sea-ice volume time series for the Arctic Ocean and its sub-basins from 1990–2019 by adjusting the ocean reanalyses ensemble toward CCI observations. Such a time series, including its uncertainty estimate, provides new insights to the evolution of the Arctic sea-ice volume during the past 30 years.</p>

2020 ◽  
Vol 14 (4) ◽  
pp. 1325-1345 ◽  
Author(s):  
Yinghui Liu ◽  
Jeffrey R. Key ◽  
Xuanji Wang ◽  
Mark Tschudi

Abstract. Sea ice is a key component of the Arctic climate system, and has impacts on global climate. Ice concentration, thickness, and volume are among the most important Arctic sea ice parameters. This study presents a new record of Arctic sea ice thickness and volume from 1984 to 2018 based on an existing satellite-derived ice age product. The relationship between ice age and ice thickness is first established for every month based on collocated ice age and ice thickness from submarine sonar data (1984–2000) and ICESat (2003–2008) and an empirical ice growth model. Based on this relationship, ice thickness is derived for the entire time period from the weekly ice age product, and the Arctic monthly sea ice volume is then calculated. The ice-age-based thickness and volume show good agreement in terms of bias and root-mean-square error with submarine, ICESat, and CryoSat-2 ice thickness, as well as ICESat and CryoSat-2 ice volume, in February–March and October–November. More detailed comparisons with independent data from Envisat for 2003 to 2010 and CryoSat-2 from CPOM, AWI, and NASA GSFC (Goddard Space Flight Center) for 2011 to 2018 show low bias in ice-age-based thickness. The ratios of the ice volume uncertainties to the mean range from 21 % to 29 %. Analysis of the derived data shows that the ice-age-based sea ice volume exhibits a decreasing trend of −411 km3 yr−1 from 1984 to 2018, stronger than the trends from other datasets. Of the factors affecting the sea ice volume trends, changes in sea ice thickness contribute more than changes in sea ice area, with a contribution of at least 80 % from changes in sea ice thickness from November to May and nearly 50 % in August and September, while less than 30 % is from changes in sea ice area in all months.


2021 ◽  
Vol 15 (6) ◽  
pp. 2575-2591
Author(s):  
H. Jakob Belter ◽  
Thomas Krumpen ◽  
Luisa von Albedyll ◽  
Tatiana A. Alekseeva ◽  
Gerit Birnbaum ◽  
...  

Abstract. Changes in Arctic sea ice thickness are the result of complex interactions of the dynamic and variable ice cover with atmosphere and ocean. Most of the sea ice exiting the Arctic Ocean does so through Fram Strait, which is why long-term measurements of ice thickness at the end of the Transpolar Drift provide insight into the integrated signals of thermodynamic and dynamic influences along the pathways of Arctic sea ice. We present an updated summer (July–August) time series of extensive ice thickness surveys carried out at the end of the Transpolar Drift between 2001 and 2020. Overall, we see a more than 20 % thinning of modal ice thickness since 2001. A comparison of this time series with first preliminary results from the international Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) shows that the modal summer thickness of the MOSAiC floe and its wider vicinity are consistent with measurements from previous years at the end of the Transpolar Drift. By combining this unique time series with the Lagrangian sea ice tracking tool, ICETrack, and a simple thermodynamic sea ice growth model, we link the observed interannual ice thickness variability north of Fram Strait to increased drift speeds along the Transpolar Drift and the consequential variations in sea ice age. We also show that the increased influence of upward-directed ocean heat flux in the eastern marginal ice zones, termed Atlantification, is not only responsible for sea ice thinning in and around the Laptev Sea but also that the induced thickness anomalies persist beyond the Russian shelves and are potentially still measurable at the end of the Transpolar Drift after more than a year. With a tendency towards an even faster Transpolar Drift, winter sea ice growth will have less time to compensate for the impact processes, such as Atlantification, have on sea ice thickness in the eastern marginal ice zone, which will increasingly be felt in other parts of the sea-ice-covered Arctic.


2019 ◽  
Author(s):  
Joula Siponen ◽  
Petteri Uotila ◽  
Eero Rinne ◽  
Steffen Tietsche

Abstract. Changes in sea-ice thickness are one of the most visible signs of climate change. However, to gain a comprehensive understanding of mechanisms involved, long time series are needed. Importantly, the development of more accurate predictions of sea ice in the Arctic requires good observational products. To assist this, a new sea-ice thickness product by ESA Climate Change Initiative (CCI) is here compared to the ocean reanalysis ORAS5 by ECMWF for the first time. The CCI product is based on two satellite altimetry missions, CryoSat-2 and ENVISAT, which are combined to the longest continuous satellite altimetry time series of Arctic-wide sea-ice thickness, 2002–2017 and continuing. Time series of sea-ice volume for the CCI coverage reveal years of extremely low volume as well as recovery during the winter season. The 15-year trends in sea-ice volume are clearly negative over the time series and despite large variability between years statistically significant. The 15-year ORAS5 trends have larger interannual variability than the CCI trends and are therefore not statistically significant despite of a good match in terms of year-to-year variability. The observed negative trends result from changes in both atmospheric and oceanic forcing. The CCI product performs well in the validation of the ORAS5 reanalysis: overall root-mean-square difference (RMSD) between sea-ice thickness from CCI and ORAS5 is below 1 m. However, seasonal and interannual RMSD variations during the time series are large, from 0.5 m to 1.3 m. The differences are a sum of reanalysis biases, such as incorrect physics or forcing, as well as uncertainties in satellite altimetry, such as the snow climatology used in the thickness retrieval.


2019 ◽  
Author(s):  
Jean-Claude Gascard ◽  
Jinlun Zhang ◽  
Mehrad Rafizadeh

Abstract. The drastic reduction of the Arctic sea ice over the past 40 years is the most glaring evidence of climate change on Planet Earth. Among all the variables characterizing sea ice, the sea ice volume is by far the most sensitive one for climate change since it is decaying at the highest rate compared to sea ice extent and sea ice thickness. In 40 years the Arctic Ocean has lost about 3/4 of its sea ice volume at the end of the summer season corresponding to a reduction of both sea ice extent and sea ice thickness by half on average. From more than 16 000 km3, 40 years ago, the Arctic sea ice summer minimum dropped down to less than 4000 km3 during the most recent summers. Being a combination of Arctic sea ice extent and sea ice thickness, the Arctic sea ice volume is difficult to observe directly and accurately. We estimated cumulative Freezing-Degree Days (FDD) over a 9 month freezing time period (September to May each year) based on ERA Interim surface air temperature reanalysis over the whole Arctic Ocean and for the past 38 years. Then we compared the Arctic sea ice volume based on sea ice thickness deduced from cumulative FDD with Arctic sea ice volume estimated from PIOMAS (Pan Arctic Ice Ocean Modeling and Assimilation System) and from the ESA CRYOSAT-2 satellite. The results are strikingly similar. The warming of the atmosphere is playing an important role in contributing to the Arctic sea ice volume decrease during the whole freezing season (September to May). In addition, the FDD spatial distribution exhibiting a sharp double peak-like feature is reflecting the Multi Y ear Ice (MYI) versus First Year Ice (FYI) dual disposition typical of the Arctic sea ice cover. This is indicative of a significant contribution from the vertical ocean heat fluxes throughout the ice depending on MYI versus FYI distribution and the snow layer on top of it influencing the surface air temperature accordingly. In 2018 the Arctic MYI vanished almost completely for the first time ever over the past 40 years. The quasi complete disappearance of the Arctic sea ice is more likely to happen in summer within the next 15 years with broad consequences for Arctic marine and terrestrial ecosystems, climate and weather patterns on a planetary scale and globally on human activities.


2019 ◽  
Author(s):  
Yinghui Liu ◽  
Jeffrey R. Key ◽  
Xuanji Wang ◽  
Mark Tschudi

Abstract. Arctic sea ice is a key component of the Arctic climate system, which in turn impacts global climate. Ice concentration, thickness, and volume are among the most important Arctic sea ice parameters. This study presents a new record of Arctic sea ice thickness and volume from 1984 to 2018 based on an existing satellite-derived ice age product. The relationship between ice age and ice thickness is first established for every month based on collocated ice age and ice thickness from submarine sonar data (1984–2000), the Ice, Cloud, and land Elevation Satellite (ICESat, 2003–2008), and an empirical ice growth model. Based on this relationship, ice thickness is derived for the entire time period from the weekly ice age product, and the Arctic monthly sea ice volume is then calculated. The ice age-based thickness and volume show good agreement in terms of bias and root mean square error with submarine, ICESat, and CryoSat-2 ice thickness, as well as ICESat and CryoSat-2 ice volume, in February/March and October/November. Sea ice volume exhibits a decreasing trend of −411 km3/year from 1984 to 2018, stronger than the trends from other datasets. Of the factors affecting volume, changes in sea ice thickness from November to May contribute at least 80 %, decreasing to around 50 % in August and September. Changes in sea ice area contribute less than 30 % in all months.


Author(s):  
J. Li ◽  
S. Zhang ◽  
F. Xiao ◽  
C. Zhu ◽  
Y. Zhang ◽  
...  

Leads are only a small part of the polar sea ice structure, but they play a dominant role on the turbulence exchange between the ocean and the atmosphere, they are also important factors about sea ice thickness inversion. Since the early 2000s, Satellite altimetry has been applied to monitor the Arctic sea ice thickness, Satellite altimetry data can be used to distinguish leads and sea ice. In this paper, four parameters including Pulse peakiness (PP), stack standard deviation (SSD), stack kurtosis (SKU) and stack skewness (SSK) are extracted from CryoSat-2 satellite altimetry waveform data. The four parameters are combined into five combinations (PP, PP&SSD, PP&SSD&SKU, PP&SSD&SSK, PP&SSD&SSK&SKU) with constrain conditions to detect the leads. The results of the five methods are compared with MODIS (moderate-resolution imagining spectroradiometer) images and show that, the combination of PP&SSD is better than the single PP, the rest of combinations are the same as the combination of PP&SSD. It turns out, there is no promotion when we add SSK and SKU, successively or simultaneously.


2016 ◽  
Author(s):  
R. L. Tilling ◽  
A. Ridout ◽  
A. Shepherd

Abstract. Timely observations of sea ice thickness help us to understand Arctic climate, and can support maritime activities in the Polar Regions. Although it is possible to calculate Arctic sea ice thickness using measurements acquired by CryoSat-2, the latency of the final release dataset is typically one month, due to the time required to determine precise satellite orbits. We use a new fast delivery CryoSat-2 dataset based on preliminary orbits to compute Arctic sea ice thickness in near real time (NRT), and analyse this data for one sea ice growth season from October 2014 to April 2015. We show that this NRT sea ice thickness product is of comparable accuracy to that produced using the final release CryoSat-2 data, with an average thickness difference of 5 cm, demonstrating that the satellite orbit is not a critical factor in determining sea ice freeboard. In addition, the CryoSat-2 fast delivery product also provides measurements of Arctic sea ice thickness within three days of acquisition by the satellite, and a measurement is delivered, on average, within 10, 7 and 6 km of each location in the Arctic every 2, 14 and 28 days respectively. The CryoSat-2 NRT sea ice thickness dataset provides an additional constraint for seasonal predictions of Arctic climate change, and will allow industries such as tourism and transport to navigate the polar oceans with safety and care.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7011
Author(s):  
Feng Xiao ◽  
Fei Li ◽  
Shengkai Zhang ◽  
Jiaxing Li ◽  
Tong Geng ◽  
...  

Satellite altimeters can be used to derive long-term and large-scale sea ice thickness changes. Sea ice thickness retrieval is based on measurements of freeboard, and the conversion of freeboard to thickness requires knowledge of the snow depth and snow, sea ice, and sea water densities. However, these parameters are difficult to be observed concurrently with altimeter measurements. The uncertainties in these parameters inevitably cause uncertainties in sea ice thickness estimations. This paper introduces a new method based on least squares adjustment (LSA) to estimate Arctic sea ice thickness with CryoSat-2 measurements. A model between the sea ice freeboard and thickness is established within a 5 km × 5 km grid, and the model coefficients and sea ice thickness are calculated using the LSA method. Based on the newly developed method, we are able to derive estimates of the Arctic sea ice thickness for 2010 through 2019 using CryoSat-2 altimetry data. Spatial and temporal variations of the Arctic sea ice thickness are analyzed, and comparisons between sea ice thickness estimates using the LSA method and three CryoSat-2 sea ice thickness products (Alfred Wegener Institute (AWI), Centre for Polar Observation and Modelling (CPOM), and NASA Goddard Space Flight Centre (GSFC)) are performed for the 2018–2019 Arctic sea ice growth season. The overall differences of sea ice thickness estimated in this study between AWI, CPOM, and GSFC are 0.025 ± 0.640 m, 0.143 ± 0.640 m, and −0.274 ± 0.628 m, respectively. Large differences between the LSA and three products tend to appear in areas covered with thin ice due to the limited accuracy of CryoSat-2 over thin ice. Spatiotemporally coincident Operation IceBridge (OIB) thickness values are also used for validation. Good agreement with a difference of 0.065 ± 0.187 m is found between our estimates and the OIB results.


2020 ◽  
Author(s):  
H. Jakob Belter ◽  
Thomas Krumpen ◽  
Luisa von Albedyll ◽  
Tatiana A. Alekseeva ◽  
Sergei V. Frolov ◽  
...  

Abstract. Changes in Arctic sea ice thickness are the result of complex interactions of the dynamic and variable ice cover with atmosphere and ocean. Most of the sea ice exits the Arctic Ocean through Fram Strait, which is why long-term measurements of ice thickness at the end of the Transpolar Drift provide insight into the integrated signals of thermodynamic and dynamic influences along the pathways of Arctic sea ice. We present an updated time series of extensive ice thickness surveys carried out at the end of the Transpolar Drift between 2001 and 2020. Overall, we see a more than 20 % thinning of modal ice thickness since 2001. A comparison with first preliminary results from the international Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) shows that the modal summer thickness of the MOSAiC floe and its wider vicinity are consistent with measurements from previous years. By combining this unique time series with the Lagrangian sea ice tracking tool, ICETrack, and a simple thermodynamic sea ice growth model, we link the observed interannual ice thickness variability north of Fram Strait to increased drift speeds along the Transpolar Drift and the consequential variations in sea ice age and number of freezing degree days. We also show that the increased influence of upward-directed ocean heat flux in the eastern marginal ice zones, termed Atlantification, is not only responsible for sea ice thinning in and around the Laptev Sea, but also that the induced thickness anomalies persist beyond the Russian shelves and are potentially still measurable at the end of the Transpolar Drift after more than a year. With a tendency towards an even faster Transpolar Drift, winter sea ice growth will have less time to compensate the impact of Atlantification on sea ice growth in the eastern marginal ice zone, which will increasingly be felt in other parts of the sea ice covered Arctic.


Sign in / Sign up

Export Citation Format

Share Document