scholarly journals Rapid decline of Arctic sea ice volume: Causes and consequences

Author(s):  
Jean-Claude Gascard ◽  
Jinlun Zhang ◽  
Mehrad Rafizadeh

Abstract. The drastic reduction of the Arctic sea ice over the past 40 years is the most glaring evidence of climate change on Planet Earth. Among all the variables characterizing sea ice, the sea ice volume is by far the most sensitive one for climate change since it is decaying at the highest rate compared to sea ice extent and sea ice thickness. In 40 years the Arctic Ocean has lost about 3/4 of its sea ice volume at the end of the summer season corresponding to a reduction of both sea ice extent and sea ice thickness by half on average. From more than 16 000 km3, 40 years ago, the Arctic sea ice summer minimum dropped down to less than 4000 km3 during the most recent summers. Being a combination of Arctic sea ice extent and sea ice thickness, the Arctic sea ice volume is difficult to observe directly and accurately. We estimated cumulative Freezing-Degree Days (FDD) over a 9 month freezing time period (September to May each year) based on ERA Interim surface air temperature reanalysis over the whole Arctic Ocean and for the past 38 years. Then we compared the Arctic sea ice volume based on sea ice thickness deduced from cumulative FDD with Arctic sea ice volume estimated from PIOMAS (Pan Arctic Ice Ocean Modeling and Assimilation System) and from the ESA CRYOSAT-2 satellite. The results are strikingly similar. The warming of the atmosphere is playing an important role in contributing to the Arctic sea ice volume decrease during the whole freezing season (September to May). In addition, the FDD spatial distribution exhibiting a sharp double peak-like feature is reflecting the Multi Y ear Ice (MYI) versus First Year Ice (FYI) dual disposition typical of the Arctic sea ice cover. This is indicative of a significant contribution from the vertical ocean heat fluxes throughout the ice depending on MYI versus FYI distribution and the snow layer on top of it influencing the surface air temperature accordingly. In 2018 the Arctic MYI vanished almost completely for the first time ever over the past 40 years. The quasi complete disappearance of the Arctic sea ice is more likely to happen in summer within the next 15 years with broad consequences for Arctic marine and terrestrial ecosystems, climate and weather patterns on a planetary scale and globally on human activities.

2020 ◽  
Vol 14 (4) ◽  
pp. 1325-1345 ◽  
Author(s):  
Yinghui Liu ◽  
Jeffrey R. Key ◽  
Xuanji Wang ◽  
Mark Tschudi

Abstract. Sea ice is a key component of the Arctic climate system, and has impacts on global climate. Ice concentration, thickness, and volume are among the most important Arctic sea ice parameters. This study presents a new record of Arctic sea ice thickness and volume from 1984 to 2018 based on an existing satellite-derived ice age product. The relationship between ice age and ice thickness is first established for every month based on collocated ice age and ice thickness from submarine sonar data (1984–2000) and ICESat (2003–2008) and an empirical ice growth model. Based on this relationship, ice thickness is derived for the entire time period from the weekly ice age product, and the Arctic monthly sea ice volume is then calculated. The ice-age-based thickness and volume show good agreement in terms of bias and root-mean-square error with submarine, ICESat, and CryoSat-2 ice thickness, as well as ICESat and CryoSat-2 ice volume, in February–March and October–November. More detailed comparisons with independent data from Envisat for 2003 to 2010 and CryoSat-2 from CPOM, AWI, and NASA GSFC (Goddard Space Flight Center) for 2011 to 2018 show low bias in ice-age-based thickness. The ratios of the ice volume uncertainties to the mean range from 21 % to 29 %. Analysis of the derived data shows that the ice-age-based sea ice volume exhibits a decreasing trend of −411 km3 yr−1 from 1984 to 2018, stronger than the trends from other datasets. Of the factors affecting the sea ice volume trends, changes in sea ice thickness contribute more than changes in sea ice area, with a contribution of at least 80 % from changes in sea ice thickness from November to May and nearly 50 % in August and September, while less than 30 % is from changes in sea ice area in all months.


2020 ◽  
Author(s):  
Torben Koenigk ◽  
Evelien Dekker

<p>In this study, we compare the sea ice in ensembles of historical and future simulations with EC-Earth3-Veg to the sea ice of the NSIDC and OSA-SAF satellite data sets. The EC-Earth3-Veg Arctic sea ice extent generally matches well to the observational data sets, and the trend over 1980-2014 is captured correctly. Interestingly, the summer Arctic sea ice area minimum occurs already in August in the model. Mainly east of Greenland, sea ice area is overestimated. In summer, Arctic sea ice is too thick compared to PIOMAS. In March, sea ice thickness is slightly overestimated in the Central Arctic but in the Bering and Kara Seas, the ice thickness is lower than in PIOMAS.</p><p>While the general picture of Arctic sea ice looks good, EC-Earth suffers from a warm bias in the Southern Ocean. This is also reflected by a substantial underestimation of sea ice area in the Antarctic.</p><p>Different ensemble members of the future scenario projections of sea ice show a large range of the date of first year with a minimum ice area below 1 million square kilometers in the Arctic. The year varies between 2024 and 2056. Interestingly, this range does not differ very much with the emission scenario and even under the low emission scenario SSP1-1.9 summer Arctic sea ice almost totally disappears.</p>


2021 ◽  
Author(s):  
Petteri Uotila ◽  
Joula Siponen ◽  
Eero Rinne ◽  
Steffen Tietsche

<p>Decadal changes in sea-ice thickness are one of the most visible signs of climate variability and change. To gain a comprehensive understanding of mechanisms involved, long time series, preferably with good uncertainty estimates, are needed. Importantly, the development of accurate predictions of sea ice in the Arctic requires good observational products. To assist this, a new sea-ice thickness product by ESA Climate Change Initiative (CCI) is compared to a set of five ocean reanalysis (ECCO-V4r4, GLORYS12V1, ORAS5 and PIOMAS).</p><p>The CCI product is based on two satellite altimetry missions, CryoSat-2 and ENVISAT, which are combined to the longest continuous satellite altimetry time series of Arctic-wide sea-ice thickness, 2002–2017. The CCI product performs well in the validation of the reanalyses: overall root-mean-square difference (RMSD) between monthly sea-ice thickness from CCI and the reanalyses ranges from 0.4–1.2 m. The differences are a sum of reanalysis biases, such as incorrect physics or forcing, as well as uncertainties in satellite altimetry, such as the snow climatology used in the thickness retrieval.</p><p>The CCI and reanalysis basin-scale sea-ice volumes have a good match in terms of year-to-year variability and long-term trends but rather different monthly mean climatologies. These findings provide a rationale to construct a multi-decadal sea-ice volume time series for the Arctic Ocean and its sub-basins from 1990–2019 by adjusting the ocean reanalyses ensemble toward CCI observations. Such a time series, including its uncertainty estimate, provides new insights to the evolution of the Arctic sea-ice volume during the past 30 years.</p>


2018 ◽  
Author(s):  
Byoung Woong An ◽  
Sang Min Lee ◽  
Pil-Hun Chang ◽  
KiRyong Kang ◽  
Yoon Jae Kim

Abstract. Ensemble sea ice forecasts of the Arctic Ocean conducted with the Korea Meteorological Administration's coupled global seasonal forecast system (GloSea5) is verified. To investigate the temporal and spatial characteristics of the seasonal projection of Arctic sea ice extent and thickness, a set of ensemble potential predictability is assessed. It shows significance for all lead months except anomalous around East Siberian Sea, Chukchi Sea and Beaufort Sea during summer months. However, during the radipdly thawing and freezing season, initial states lose its predictability and increase uncertainties in the prediction. The probability skill metrics show the summer sea ice prediction which strongly depends on the sea ice thickness interacting with the accuracy of the snow depth. We found the forecast skill is determined primarily by the timing of sea ice drift (i.e., Beaufort Gyre and Transpolar drift) and sea ice formation by freshwater flux in the East Siberian Sea. Therefore, capturing the sea ice thickness state effectively is the key process for skillful estimation of Arctic sea ice. In spite of the uncertainties in atmospheric conditions, this system provides skillful Arctic seasonal sea ice extent predictions up to six months.


2019 ◽  
Author(s):  
Yinghui Liu ◽  
Jeffrey R. Key ◽  
Xuanji Wang ◽  
Mark Tschudi

Abstract. Arctic sea ice is a key component of the Arctic climate system, which in turn impacts global climate. Ice concentration, thickness, and volume are among the most important Arctic sea ice parameters. This study presents a new record of Arctic sea ice thickness and volume from 1984 to 2018 based on an existing satellite-derived ice age product. The relationship between ice age and ice thickness is first established for every month based on collocated ice age and ice thickness from submarine sonar data (1984–2000), the Ice, Cloud, and land Elevation Satellite (ICESat, 2003–2008), and an empirical ice growth model. Based on this relationship, ice thickness is derived for the entire time period from the weekly ice age product, and the Arctic monthly sea ice volume is then calculated. The ice age-based thickness and volume show good agreement in terms of bias and root mean square error with submarine, ICESat, and CryoSat-2 ice thickness, as well as ICESat and CryoSat-2 ice volume, in February/March and October/November. Sea ice volume exhibits a decreasing trend of −411 km3/year from 1984 to 2018, stronger than the trends from other datasets. Of the factors affecting volume, changes in sea ice thickness from November to May contribute at least 80 %, decreasing to around 50 % in August and September. Changes in sea ice area contribute less than 30 % in all months.


2009 ◽  
Vol 22 (1) ◽  
pp. 165-176 ◽  
Author(s):  
R. W. Lindsay ◽  
J. Zhang ◽  
A. Schweiger ◽  
M. Steele ◽  
H. Stern

Abstract The minimum of Arctic sea ice extent in the summer of 2007 was unprecedented in the historical record. A coupled ice–ocean model is used to determine the state of the ice and ocean over the past 29 yr to investigate the causes of this ice extent minimum within a historical perspective. It is found that even though the 2007 ice extent was strongly anomalous, the loss in total ice mass was not. Rather, the 2007 ice mass loss is largely consistent with a steady decrease in ice thickness that began in 1987. Since then, the simulated mean September ice thickness within the Arctic Ocean has declined from 3.7 to 2.6 m at a rate of −0.57 m decade−1. Both the area coverage of thin ice at the beginning of the melt season and the total volume of ice lost in the summer have been steadily increasing. The combined impact of these two trends caused a large reduction in the September mean ice concentration in the Arctic Ocean. This created conditions during the summer of 2007 that allowed persistent winds to push the remaining ice from the Pacific side to the Atlantic side of the basin and more than usual into the Greenland Sea. This exposed large areas of open water, resulting in the record ice extent anomaly.


2016 ◽  
Author(s):  
R. L. Tilling ◽  
A. Ridout ◽  
A. Shepherd

Abstract. Timely observations of sea ice thickness help us to understand Arctic climate, and can support maritime activities in the Polar Regions. Although it is possible to calculate Arctic sea ice thickness using measurements acquired by CryoSat-2, the latency of the final release dataset is typically one month, due to the time required to determine precise satellite orbits. We use a new fast delivery CryoSat-2 dataset based on preliminary orbits to compute Arctic sea ice thickness in near real time (NRT), and analyse this data for one sea ice growth season from October 2014 to April 2015. We show that this NRT sea ice thickness product is of comparable accuracy to that produced using the final release CryoSat-2 data, with an average thickness difference of 5 cm, demonstrating that the satellite orbit is not a critical factor in determining sea ice freeboard. In addition, the CryoSat-2 fast delivery product also provides measurements of Arctic sea ice thickness within three days of acquisition by the satellite, and a measurement is delivered, on average, within 10, 7 and 6 km of each location in the Arctic every 2, 14 and 28 days respectively. The CryoSat-2 NRT sea ice thickness dataset provides an additional constraint for seasonal predictions of Arctic climate change, and will allow industries such as tourism and transport to navigate the polar oceans with safety and care.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7011
Author(s):  
Feng Xiao ◽  
Fei Li ◽  
Shengkai Zhang ◽  
Jiaxing Li ◽  
Tong Geng ◽  
...  

Satellite altimeters can be used to derive long-term and large-scale sea ice thickness changes. Sea ice thickness retrieval is based on measurements of freeboard, and the conversion of freeboard to thickness requires knowledge of the snow depth and snow, sea ice, and sea water densities. However, these parameters are difficult to be observed concurrently with altimeter measurements. The uncertainties in these parameters inevitably cause uncertainties in sea ice thickness estimations. This paper introduces a new method based on least squares adjustment (LSA) to estimate Arctic sea ice thickness with CryoSat-2 measurements. A model between the sea ice freeboard and thickness is established within a 5 km × 5 km grid, and the model coefficients and sea ice thickness are calculated using the LSA method. Based on the newly developed method, we are able to derive estimates of the Arctic sea ice thickness for 2010 through 2019 using CryoSat-2 altimetry data. Spatial and temporal variations of the Arctic sea ice thickness are analyzed, and comparisons between sea ice thickness estimates using the LSA method and three CryoSat-2 sea ice thickness products (Alfred Wegener Institute (AWI), Centre for Polar Observation and Modelling (CPOM), and NASA Goddard Space Flight Centre (GSFC)) are performed for the 2018–2019 Arctic sea ice growth season. The overall differences of sea ice thickness estimated in this study between AWI, CPOM, and GSFC are 0.025 ± 0.640 m, 0.143 ± 0.640 m, and −0.274 ± 0.628 m, respectively. Large differences between the LSA and three products tend to appear in areas covered with thin ice due to the limited accuracy of CryoSat-2 over thin ice. Spatiotemporally coincident Operation IceBridge (OIB) thickness values are also used for validation. Good agreement with a difference of 0.065 ± 0.187 m is found between our estimates and the OIB results.


2021 ◽  
Author(s):  
Won-il Lim ◽  
Hyo-Seok Park ◽  
Andrew Stewart ◽  
Kyong-Hwan Seo

Abstract The ongoing Arctic warming has been pronounced in winter and has been associated with an increase in downward longwave radiation. While previous studies have demonstrated that poleward moisture flux into the Arctic strengthens downward longwave radiation, less attention has been given to the impact of the accompanying increase in snowfall. Here, utilizing state-of-the art sea ice models, we show that typical winter snowfall anomalies of 1.0 cm, accompanied by positive downward longwave radiation anomalies of ~5 W m-2 can decrease sea ice thickness by around 5 cm in the following spring over the Eurasian Seas. This basin-wide ice thinning is followed by a shrinking of summer ice extent in extreme cases. In the winter of 2016–17, anomalously strong warm/moist air transport combined with ~2.5 cm increase in snowfall decreased spring ice thickness by ~10 cm and decreased the following summer sea ice extent by 5–30%. Projected future reductions in the thickness of Arctic sea ice and snow will amplify the impact of anomalous winter snowfall events on winter sea ice growth and seasonal sea ice thickness.


Sign in / Sign up

Export Citation Format

Share Document