Search for Martian Schumann Resonances

2020 ◽  
Author(s):  
Yanan Yu ◽  
Christopher Russell ◽  
Peter Chi ◽  
Syed Haider ◽  
Jayesh Pabari ◽  
...  

<p>On Earth, electric discharges in thunderstorms produce ELF waves in the Earth-ionosphere waveguide that circles the globe. These waves give rise to Schumann resonances in the waveguide resonant cavity. These waves are also expected to occur at Venus, produced by strong lightning in the Venus atmosphere and at Mars produced by active dust devils or dust storms, during southern hemisphere summer, when the planet is near periapsis. Within dust storms, dust particles undergo triboelectric charging. The charge transfer leads to charge separation. A lightning discharge is expected to occur when the charge exceeds the breakdown strength of the media present. The transient electric discharge emits electromagnetic waves in the VLF/ELF range of frequency, leading to Schumann Resonance in the surface-ionospheric cavity. In a heterogeneous cavity, Schumann resonance modes are observable using an in-situ instrument. Recently has it been possible to search for these electromagnetic waves from the Mars surface using the UCLA-provided InSight fluxgate magnetometer. The weakness of the vertical component of ULF waves at Mars suggests that the subsurface is electrically conducting, allowing trapping of electromagnetic energy between the sub-surface and the ionosphere. The fundamental mode of Schumann resonance carries higher energy compared to there are more chances of observing the fundamental mode. Various values of the first mode are predicted in the literature for Mars like 13-14 Hz or between 9-14 Hz and 17.5 Hz. Even if the fundamental mode is above 10 Hz, the 20 Hz sampling rate will allow detection of an aliased signal. We examine the data obtained during Martian sandstorms for the possible existence of such waves. A large dust storm was detected on Mars beginning on InSight sols 40 to 50, and ending during sols 50 to 90. Examining the 20 Hz InSight magnetometer data during this period reveals no clearly identifiable Schumann Resonance signals within the bandwidth of the magnetometer.</p>

2019 ◽  
Vol 8 (3) ◽  
pp. 1014-1021
Author(s):  
Elfatih A. A. Elsheikh ◽  
Islam Md. Rafiqul ◽  
Mohamad Hadi Habaebi ◽  
Ahmad F. Ismail ◽  
Z. E. O. Elshaikh ◽  
...  

Sand and dust storms are environmental phenomena ,during these storms optical visibility might be decreased, consequently, atmospheric attenuation is clearly noticed.Micro-wave (MW) and Milimeter-wave (mm) propagation is severely affected by dust and sand storms in considerable areas around the world. Suspended dust particles may directly cause attenuation and cross polarization to the Electromagnetic waves propagating through the storm. In this paper, a thorough investigation of dust storm characteristics based onmeasured optical visibility and relative humidity is presented. In addition,the dust storms effects of on Micro-wave and Millimeter-wave propagation have been studied based on data measured Received Signal levels (RSL)and dust storm characteristics synchronously. Analyticaldustattenuationmodels predictions are matched to the measured attenuationdata at 14 GHz and 21 GHz. It has been found that the measured attenuation is approximately ten times higher than the predicted attenuation for both frequencies.


2009 ◽  
Vol 39 (4) ◽  
pp. 345-354 ◽  
Author(s):  
Adriena Ondrášková ◽  
Sebastián Ševčík ◽  
Pavel Kostecký

A significant decrease of the fundamental Schumann resonance frequency during the solar cycle minimum of 2008-9 as observed at Modra ObservatoryThe Schumann resonances (SR) are electromagnetic eigenmodes of the resonator bounded by the Earth's surface and the lower ionosphere. The SR frequency variability has been studied for more than 4 decades. Using data from the period 1988 to 2002,Sátori et al. (2005)showed that the SR fundamental mode frequency decreased on the 11-year time scale by 0.07 - 0.2 Hz, depending on which component of the field was used for estimation and likely also on the location of the observer. A decrease by 0.30 Hz from the latest solar cycle maximum to the minimum of 2009 is found in data from Modra Observatory. This extraordinary fall of the fundamental mode frequency can be attributed to the unprecedented drop in the ionizing radiation in X-ray frequency band. Although the patterns of the daily and seasonal variations remain the same in the solar cycle minimum as in the solar cycle maximum, they are significantly shifted to lower frequencies during the minimum. Analysis of the daily frequency range suggests that the main thunderstorm regions during the north hemisphere summer are smaller in the solar cycle minimum than in the maximum.


Author(s):  
C. Béghin ◽  
G. Wattieaux ◽  
R. Grard ◽  
M. Hamelin ◽  
J. P. Lebreton

Abstract. This works presents the results obtained from an updated data analysis of the observations of Extremely Low Frequency (ELF) electromagnetic waves performed with the HASI-PWA (Huygens Atmospheric Structure and Permittivity, Wave and Altimetry) instrumentation after Huygens Probe landing on Titan surface in January 2005. The most significant signals observed at around 36 Hz throughout the descent in the atmosphere have been extensively analyzed for several years, and subsequently interpreted as the signature of a Schumann resonance, although the latter exhibits atypical peculiarities compared with those known on Earth. The usual depicting methods of space wave data used so far could not allow retrieving the presence of weak signals when Huygens was at rest for 32 min on Titan's surface. Whereas the expected signal seems hidden within the instrumental noise, we show that a careful statistical analysis of the amplitude distribution of the 418 spectral density samples of the 36 Hz line reveals abnormal characteristics compared to other frequencies. This behavior is shown to occur under propitious circumstances due to the characteristics of the onboard data conversion processes into digital telemetry counts, namely 8-bit dynamic after logarithm compression of the DFT (Discrete Fourier Transform) of ELF waveforms. Since this phenomenon is observed only at the frequency bin around 36 Hz, we demonstrate that the Schumann resonance, seen in the atmosphere within the same band, is still present on the surface, albeit with a much smaller amplitude compared to that measured before and a few seconds after the impact, because the electric dipole is thought to have been stabilized ten seconds later almost horizontally until the end of the measurements.


2019 ◽  
Author(s):  
Huan Zhang ◽  
You-He Zhou

Abstract. Particle tribo-electrification being ubiquitous in nature and industry, potentially plays a key role in dust events, including the lifting and transport of sand and dust particles. However, the properties of electric field (E-field) and its influences on saltation during dust storms remain obscure as the high complexity of dust storms and the existing numerical studies mainly limited to one-dimensional (1-D) E-field. Here, we quantify the effects of real three-dimensional (3-D) E-field on saltation, through a combination of field observations and numerical modelling. The 3-D E-fields in the sub-meter layer from 0.05 to 0.7 m above the ground during a dust storm are measured at Qingtu Lake Observation Array site. The measured results show that each component of the 3-D E-field data nearly collapses on a single 3-order polynomial curve when normalized. Interestingly, the vertical component of the 3-D E-field increases with increasing height in the saltation layer during dust storms. Such 3-D E-field data close to the ground within a few centimeters has never been reported and formulated before. Using the discrete element method, we then develop a comprehensive saltation model, in which the tribo-electrification between particle-particle midair collisions is explicitly accounted for, allowing us to evaluate the tribo-electrification in saltation properly. By combining the results of measurements and modelling, we find that although the vertical component of the E-field (i.e. 1-D E-field) inhibits sand transport, 3-D E-field enhances sand transport substantially. Furthermore, the model predicts that 3-D E-field enhances the total mass flux by up to 63 %. This suggests that a truly 3-D E-field consideration is necessary if one is to explain precisely how the E-field affects saltation during dust storms. These results will further improve our understanding of particle tribo-electrification in saltation and help to provide more accurate characterizations of sand and dust transport during dust storms.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Huan Zhang ◽  
You-He Zhou

Abstract While the electrification of dust storms is known to substantially affect the lifting and transport of dust particles, the electrical structure of dust storms and its underlying charge separation mechanisms are largely unclear. Here we present an inversion method, which is based on the Tikhonov regularization for inverting the electric field data collected in a near-ground observation array, to reconstruct the space-charge density and electric field in dust storms. After verifying the stability, robustness, and accuracy of the inversion procedure, we find that the reconstructed space-charge density exhibits a universal three-dimensional mosaic pattern of oppositely charged regions, probably due to the charge separation by turbulence. Furthermore, there are significant linear relationships between the reconstructed space-charge densities and measured PM10 dust concentrations at each measurement point, suggesting a multi-point large-scale charge equilibrium phenomenon in dust storms. These findings refine our understanding of charge separation mechanisms and particle transport in dust storms.


SAGE Open ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 215824402093107
Author(s):  
Natalia Soto-Coloballes

The present essay documents changes to both objects of inquiry and the meaning of the epistemological concept of air pollution and it explains the processes that produced them. Smog as a result of production processes and the use of the automobile was not a concern for researchers and government managers in Mexico City, who were used to the dust storms resulting from the desiccation of the great Texcoco Lake during much of the 20th century, until the most industrialized nations of the West and the World Health Organization (WHO), alongside other international bodies such as the Organization for European Economic Cooperation (OEEC), reframed what was understood as air pollution, between the end of the 1960s and the beginning of the 1970s. Concerns about dust storms were displaced by concerns about factory and automotive emissions that contained new dangers—invisible hazards, just then being estimated, which altered what was understood or considered air pollution and gave rise to the quantification of particulate matter (which was then known as suspended dust particles) and new practices such as atmospheric monitoring. This essay concludes that what is understood as air pollution is situated; its meaning is not finite but simply evolves with time and with the rise of new global risks and concerns.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Boris B. Chen ◽  
Leonid G. Sverdlik ◽  
Sanjar A. Imashev ◽  
Paul A. Solomon ◽  
Jeffrey Lantz ◽  
...  

The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM2.5 and PM10 mass and chemical composition in both size fractions. Dust transported into the region is common, being detected 33% of the time. The maximum frequency occurred in the spring of 2009. Dust transported to Central Asia comes from regional sources, for example, Taklimakan desert and Aral Sea basin, and from long-range transport, for example, deserts of Arabia, Northeast Africa, Iran, and Pakistan. Regional sources are characterized by pollution transport with maximum values of coarse particles within the planetary boundary layer, aerosol optical thickness, extinction coefficient, integral coefficient of aerosol backscatter, and minimum values of the Ångström exponent. Pollution associated with air masses transported over long distances has different characteristics during autumn, winter, and spring. During winter, dust emissions were low resulting in high values of the Ångström exponent (about 0.51) and the fine particle mass fraction (64%). Dust storms were more frequent during spring with an increase in coarse dust particles in comparison to winter. The aerosol vertical profiles can be used to lower uncertainty in estimating radiative forcing.


2020 ◽  
Author(s):  
Eyal Ben Dor ◽  
Gila Notesko ◽  
Shahar Weksler

<p>Soil mineralogy holds important information on the soil origin and development. Most common minerals in soils—quartz, clay minerals and carbonates—present fundamental spectral features in the longwave infrared (LWIR) region (8.0–12 μm range), whereas quartz is featureless in the optical region (0.4–2.5 μm range). A procedure for determining the soil surface mineralogy from hyperspectral LWIR data was used to assess the interaction with desert dust particles that accumulate on the soil surface during dust storms. Ground- and field-based hyperspectral LWIR images of different types of Israeli soils, before and after dispersion of desert dust-like material on the surface, were acquired with the Telops Hyper-Cam sensor, to calculate the surface emissivity spectra of soils, representing the surface mineralogy. Identifying mineral-related emissivity features and calculating their relative intensities, using two created indices―SQCMI (Soil Quartz Clay Mineral Index) and SCI (Soil Carbonate Index)―enabled determining the content of quartz, clay minerals, and carbonates in the soil in a semi-quantitative manner—from more to less abundant, and identifying changes in their abundance resulting from the dispersion of dust on the surface. The dust affected the mineral-related spectral features of the soil surface, depending on the mineral composition of the dust compared to soil surface mineralogy, and its amount. The ability to detect minor mineralogical changes on the soil surface using high spectral resolution LWIR data was demonstrated.</p>


2020 ◽  
Author(s):  
Zoltan Sternovsky ◽  
Ming-Hsueh Shen ◽  
Michael DeLuca ◽  
Åshild Fredriksen ◽  
Mihály Horányi ◽  
...  

<p>Antenna instruments on space missions have been used to detect dust particles and characterize dust populations. The antennas register the transient electric signal generated by the expansion of the impact plasma from the dust impact on the spacecraft body or the antenna. Given the large effective sensitive area, antenna instruments offer an advantage over dedicated dust detectors for dust populations with low fluxes. The dust accelerator facility operated at the University of Colorado has been employed to investigate the physical mechanisms of antenna signal generation. The dominant mechanism is related to the charging of the spacecraft (or antenna) by collecting some fraction of electrons and ions from the impact plasma. We have carried out a number of experimental campaigns in order to characterize the dust impact charge yields from relevant materials, the effective temperatures of dust impact plasmas, and variations of the antenna signals with spacecraft potential, or magnetic field. Here we report on a physical model that provides a good qualitative and quantitative description of the antenna waveforms recorded in laboratory conditions. The model is based on the separation of the electrons from the ions in the impact plasma and their different timescales of expansion. The escaping and collected fractions of charges are driven by the spacecraft potential. Fitting the model to the laboratory data revealed that the electrons in the impact plasma have an isotropic distribution, while ions are dominantly moving away from the dust impact location. Identifying the fine details in the antenna signals requires a relatively high sampling rate and thus not commonly resolved for past instruments. The high-rate mode of the FIELDS instrument on the Parker Solar Probe, however, can be used to verify the proposed model.</p>


Sign in / Sign up

Export Citation Format

Share Document