scholarly journals A multi-model ensemble method that combines imperfect models through learning

2011 ◽  
Vol 2 (1) ◽  
pp. 161-177 ◽  
Author(s):  
L. A. van den Berge ◽  
F. M. Selten ◽  
W. Wiegerinck ◽  
G. S. Duane

Abstract. In the current multi-model ensemble approach climate model simulations are combined a posteriori. In the method of this study the models in the ensemble exchange information during simulations and learn from historical observations to combine their strengths into a best representation of the observed climate. The method is developed and tested in the context of small chaotic dynamical systems, like the Lorenz 63 system. Imperfect models are created by perturbing the standard parameter values. Three imperfect models are combined into one super-model, through the introduction of connections between the model equations. The connection coefficients are learned from data from the unperturbed model, that is regarded as the truth. The main result of this study is that after learning the super-model is a very good approximation to the truth, much better than each imperfect model separately. These illustrative examples suggest that the super-modeling approach is a promising strategy to improve weather and climate simulations.

2010 ◽  
Vol 1 (1) ◽  
pp. 247-296 ◽  
Author(s):  
L. A. van den Berge ◽  
F. M. Selten ◽  
W. Wiegerinck ◽  
G. S. Duane

Abstract. In the current multi-model ensemble approach climate model simulations are combined a posteriori. In the method of this study the models in the ensemble exchange information during simulations and learn from historical observations to combine their strengths into a best representation of the observed climate. The method is developed and tested in the context of small chaotic dynamical systems, like the Lorenz 63 system. Imperfect models are created by perturbing the standard parameter values. Three imperfect models are combined into one super-model, through the introduction of connections between the model equations. The connection coefficients are learned from data from the unperturbed model, that is regarded as the truth. The main result of this study is that after learning the super-model is a very good approximation to the truth, much better than each imperfect model separately. These illustrative examples suggest that the super-modeling approach is a promising strategy to improve climate simulations.


Author(s):  
Emanuela Pichelli ◽  
Erika Coppola ◽  
Nikolina Ban ◽  
Filippo Giorgi ◽  
Paolo Stocchi ◽  
...  

<p>We present a multi-model ensemble of regional climate model scenario simulations run at scales allowing for explicit treatment of convective processes (2-3km) over historical and end of century time slices, providing an overview of future precipitation changes over the Alpine domain within the convection-permitting CORDEX-FPS initiative. The 12 simulations of the ensemble have been performed by different research groups around Europe. The simulations are compared with high resolution observations to assess the performance over the historical period and the ensemble of 12 to 25 km resolution driving models is used as a benchmark.</p><p>An improvement of the representation of fine scale details of the analyzed fields on a seasonal scale is found, as well as of the onset and peak of the summer diurnal convection. An enhancement of the projected patterns of change and modifications of its sign for the daily precipitation intensity and heavy precipitation over some regions are found with respect to coarse resolution ensemble. A change of the amplitude of the diurnal cycle for precipitation intensity and frequency is also shown, as well also a larger positive change for high to extreme events for daily and hourly precipitation distributions. The results  are challenging and promising for further assessment of the local impacts of climate change.</p>


2011 ◽  
Vol 4 (1) ◽  
pp. 45-63 ◽  
Author(s):  
T. Marke ◽  
W. Mauser ◽  
A. Pfeiffer ◽  
G. Zängl

Abstract. The present study investigates a statistical approach for the downscaling of climate simulations focusing on those meteorological parameters most commonly required as input for climate change impact models (temperature, precipitation, air humidity and wind speed), including the option to correct biases in the climate model simulations. The approach is evaluated by the utilization of a hydrometeorological model chain consisting of (i) the regional climate model MM5 (driven by reanalysis data at the boundaries of the model domain), (ii) the downscaling and model interface SCALMET, and (iii) the hydrological model PROMET. The results of four hydrological model runs are compared to discharge recordings at the gauge of the Upper Danube Watershed (Central Europe) for the historical period of 1972–2000 on a daily time basis. The comparison reveals that the presented approaches allow for a more accurate simulation of discharge for the catchment of the Upper Danube Watershed and the considered gauge at the outlet in Achleiten. The correction for subgrid-scale variability is shown to reduce biases in simulated discharge compared to the utilization of bilinear interpolation. Further enhancements in model performance could be achieved by a correction of biases in the RCM data within the downscaling process. Although the presented downscaling approach strongly improves the performance of the hydrological model, deviations from the observed discharge conditions persist that are not found when driving the hydrological model with spatially distributed meteorological observations.


2020 ◽  
Author(s):  
Mohamadou Diallo ◽  
Hella Garny ◽  
Roland Eichinger ◽  
Valentina Aquila ◽  
Manfred Ern ◽  
...  

<p>The stratospheric Brewer--Dobson circulation (BDC) is an important element of climate system as it determines the concentration of radiatively active trace gases like water vapor, ozone and aerosol above the tropopause. Climate models predict that increasing greenhouse gas levels speed up the stratospheric circulation. BDC changes is substantially modulated by different modes of climate variability (QBO, ENSO, solar cycle), including the volcanic aerosols. However, such variability is often not reliably included or represented in current climate model simulations, challenging the evaluation of models’ behavior against observations and constituting a major uncertainty in current climate simulations. </p><p>Here, we investigate the main differences between the reanalysis and the CCMI/CMIP6 climate models’ response to stratospheric volcanic forcings regarding the depth/strength of the stratospheric BDC, with a focus on potential changes in the deep and shallow circulation branches. We also discuss the key reasons of the discrepancies (incl. uncertainties associated with volcanological forcing datasets and missing direct aerosol heating in the reanalysis) in the BDC response between reanalysis-driven and climate model simulations in the lower, mid and upper stratosphere. Finally, we assess the dynamical mechanisms involved in the volcanically-induced BDC changes to understand the opposite regime between lower, middle and upper stratosphere after the Mt Pinatubo eruption.</p>


2012 ◽  
Vol 8 (3) ◽  
pp. 919-933 ◽  
Author(s):  
I. Dorado Liñán ◽  
U. Büntgen ◽  
F. González-Rouco ◽  
E. Zorita ◽  
J. P. Montávez ◽  
...  

Abstract. Past temperature variations are usually inferred from proxy data or estimated using general circulation models. Comparisons between climate estimations derived from proxy records and from model simulations help to better understand mechanisms driving climate variations, and also offer the possibility to identify deficiencies in both approaches. This paper presents regional temperature reconstructions based on tree-ring maximum density series in the Pyrenees, and compares them with the output of global simulations for this region and with regional climate model simulations conducted for the target region. An ensemble of 24 reconstructions of May-to-September regional mean temperature was derived from 22 maximum density tree-ring site chronologies distributed over the larger Pyrenees area. Four different tree-ring series standardization procedures were applied, combining two detrending methods: 300-yr spline and the regional curve standardization (RCS). Additionally, different methodological variants for the regional chronology were generated by using three different aggregation methods. Calibration verification trials were performed in split periods and using two methods: regression and a simple variance matching. The resulting set of temperature reconstructions was compared with climate simulations performed with global (ECHO-G) and regional (MM5) climate models. The 24 variants of May-to-September temperature reconstructions reveal a generally coherent pattern of inter-annual to multi-centennial temperature variations in the Pyrenees region for the last 750 yr. However, some reconstructions display a marked positive trend for the entire length of the reconstruction, pointing out that the application of the RCS method to a suboptimal set of samples may lead to unreliable results. Climate model simulations agree with the tree-ring based reconstructions at multi-decadal time scales, suggesting solar variability and volcanism as the main factors controlling preindustrial mean temperature variations in the Pyrenees. Nevertheless, the comparison also highlights differences with the reconstructions, mainly in the amplitude of past temperature variations and in the 20th century trends. Neither proxy-based reconstructions nor model simulations are able to perfectly track the temperature variations of the instrumental record, suggesting that both approximations still need further improvements.


2016 ◽  
Vol 45 (1) ◽  
pp. 81-96 ◽  
Author(s):  
Thomas Mendlik ◽  
Georg Heinrich ◽  
Andreas Gobiet ◽  
Armin Leuprecht

We present the R package wux, a toolbox to analyze projected climate change signals by numerical climate model simulations and the associated uncertainties. The focus of this package is to automatically process big amounts of climate model data from multi-model ensembles in a user-friendly and flexible way. For this purpose, climate model output in common binary format (NetCDF) is read in and stored in a data frame, after first being aggregated to a desired temporal resolution and then being averaged over spatial domains of interest. The data processing can be performed for any number of meteorological parameters at one go, which allows multivariate statistical analysis of the climate model ensemble.


2020 ◽  
Vol 16 (6) ◽  
pp. 2039-2054
Author(s):  
Suzanne Alice Ghislaine Leroy ◽  
Klaus Arpe ◽  
Uwe Mikolajewicz ◽  
Jing Wu

Abstract. Publications on temperate deciduous tree refugia in Europe are abundant, but little is known about the patterns of temperate tree refugia in eastern Asia, an area where biodiversity survived Quaternary glaciations and which has the world's most diverse temperate flora. Our goal is to compare climate model simulations with pollen data in order to establish the location of glacial refugia during the Last Glacial Maximum (LGM). Limits in which temperate deciduous trees can survive are taken from the literature. The model outputs are first tested for the present by comparing climate models with published modern pollen data. As this method turned out to be satisfactory for the present, the same approach was used for the LGM. Climate model simulations (ECHAM5 T106), statistically further downscaled, are used to infer the temperate deciduous tree distribution during the LGM. These were compared with available fossil temperate tree pollen occurrences. The impact of the LGM on the eastern Asian climate was much weaker than on the European climate. The area of possible tree growth shifts only by about 2∘ to the south between the present and the LGM. This contributes to explaining the greater biodiversity of forests in eastern Asia compared to Europe. Climate simulations and the available, although fractional, fossil pollen data agree. Therefore, climate estimations can safely be used to fill areas without pollen data by mapping potential refugia distributions. The results show two important areas with population connectivity: the Yellow Sea emerged shelf and the southern Himalayas. These two areas were suitable for temperate deciduous tree growth, providing corridors for population migration and connectivity (i.e. less population fragmentation) in glacial periods. Many tree populations live in interglacial refugia, not glacial ones. The fact that the model simulation for the LGM fits so well with observed pollen distribution is another indication that the model used is good enough to also simulate the LGM period.


2020 ◽  
Vol 117 (38) ◽  
pp. 23401-23407
Author(s):  
Peter O. Hopcroft ◽  
Gilles Ramstein ◽  
Thomas A. M. Pugh ◽  
Stephen J. Hunter ◽  
Fabiola Murguia-Flores ◽  
...  

Warm periods in Earth’s history offer opportunities to understand the dynamics of the Earth system under conditions that are similar to those expected in the near future. The Middle Pliocene warm period (MPWP), from 3.3 to 3.0 My B.P, is the most recent time when atmospheric CO2levels were as high as today. However, climate model simulations of the Pliocene underestimate high-latitude warming that has been reconstructed from fossil pollen samples and other geological archives. One possible reason for this is that enhanced non-CO2trace gas radiative forcing during the Pliocene, including from methane (CH4), has not been included in modeling. We use a suite of terrestrial biogeochemistry models forced with MPWP climate model simulations from four different climate models to produce a comprehensive reconstruction of the MPWP CH4cycle, including uncertainty. We simulate an atmospheric CH4mixing ratio of 1,000 to 1,200 ppbv, which in combination with estimates of radiative forcing from N2O and O3, contributes a non-CO2radiative forcing of 0.9W⋅m−2(range 0.6 to 1.1), which is 43% (range 36 to 56%) of the CO2radiative forcing used in MPWP climate simulations. This additional forcing would cause a global surface temperature increase of 0.6 to 1.0 °C, with amplified changes at high latitudes, improving agreement with geological evidence of Middle Pliocene climate. We conclude that natural trace gas feedbacks are critical for interpreting climate warmth during the Pliocene and potentially many other warm phases of the Cenezoic. These results also imply that using Pliocene CO2and temperature reconstructions alone may lead to overestimates of the fast or Charney climate sensitivity.


2004 ◽  
Vol 4 (1) ◽  
pp. 327-342 ◽  
Author(s):  
V. Grewe

Abstract. Nitrogen oxide (NOx=NO+NO2) emissions from various sources contribute to the ozone budget. The identification of these contributions is important, e.g.  for the assessment of emissions from traffic. The non-linear character of ozone chemistry complicates the online diagnosis during multi-decadal chemistry-climate simulations. A methodology is suggested, which is efficient enough to be incorporated in multi-decadal simulations. Eight types of NOx emissions are included in the model. For each a NOy (=all N components, except N2 and N2O) tracer and an ozone tracer is included in the model, which experience the same emissions and loss processes like the online chemistry fields. To calculate the ozone changes caused by an individual NOx emission, the assumption is made that the NOx contributions from various sources are identical to the NOy contributions. To evaluate this method each NOx emission has been increased by 5% and a detailed error analysis is given. In the regions of the main impact of individual sources the potential error of the calculated contribution is significantly smaller than the contribution. Moreover, the changes caused by an increase of the emissions of 5% were detected with a higher accuracy than the potential errror of the absolut contribution.


2020 ◽  
Author(s):  
Suzanne Alice Ghislaine Leroy ◽  
Klaus Arpe ◽  
Uwe Mikolajewicz ◽  
Jing Wu

Abstract. Publications on temperate deciduous tree refugia in Europe are abundant, but little is known about the patterns of temperate tree refugia in eastern Asia, an area where biodiversity survived Quaternary glaciations and which has the world's most diverse temperate flora. Our goal is to compare climate model simulations with pollen data in order to establish the location of glacial refugia during the Last Glacial Maximum (LGM) period. Limits in which temperate deciduous trees can survive are taken from the literature. The model outputs are first tested for the present by comparing climate models with published modern pollen data. As this method turned out to be satisfactory for the present, the same approach was used for the LGM, Climate model simulations (ECHAM5 T106), statistically further down-scaled, are used to infer the temperate deciduous trees distribution during the LGM. These were compared with available fossil temperate tree pollen occurrences. The impact of the LGM on the eastern Asia climate was much weaker than on the European climate. The area of possible tree growth shifts only by about 2° to the south between the present and the LGM. This contributes to explain the greater biodiversity of forests in eastern Asia compared to Europe. Climate simulations and the available, although fractional, fossil pollen data agree. Therefore climate estimations can safely be used to fill areas without pollen data by mapping potential refugia distributions. The results show two important areas with population connectivity: the Yellow Sea emerged shelf and the southern Himalayas. These two areas were suitable for temperate deciduous tree growth, providing corridors for population migration and connectivity (i.e. less population fragmentation) in glacial and in interglacial periods. Many tree populations live in interglacial refugia; not glacial ones. The fact that the model simulation for the LGM fits so well with observed pollen distribution is another indication that the used model is good to simulate also the LGM period.


Sign in / Sign up

Export Citation Format

Share Document