scholarly journals Fluvial response to changes in the magnitude and frequency of sediment supply in a 1D model

2018 ◽  
Author(s):  
Tobias Müller ◽  
Marwan Hassan

Abstract. In steep headwater reaches, episodic mass movements can deliver large volumes of sediment to fluvial channels. If these inputs of sediment occur with a high frequency and magnitude, the capacity of the stream to rework the supplied material can be exceeded for a significant amount of time. To study the equilibrium conditions in a channel following different episodic sediment supply regimes (defined by grain size distribution, frequency, and magnitude of events), we simulate sediment transport through an idealized reach with our numerical 1D model BESMo (Bedload Scenario Model), which was configured using flume experiments with a similar scope. The model performs well in replicating the flume experiments (where sediment was fed constantly, in 1, 2 or 4 pulses) and allowed the exploration of alternative event sequences. We show that in these experiments, the ordering of events is not important in the long term, as the channel quickly recovers even from high magnitude events. In longer equilibrium simulations, we imposed different supply regimes on a channel, which after some time leads to an adjustment of slope, grain size, and sediment transport that is in equilibrium with the respective forcing conditions. We observe two modes of channel adjustment to episodic sediment supply. 1) High-frequency supply regimes lead to equilibrium slopes and armouring ratios that are like conditions in constant feed simulations. In these cases, the period between pulses is shorter than a fluvial evacuation time, which we approximate as the time it takes to export a pulse of sediment under average transport conditions. 2) In low-frequency regimes the pulse period (i.e. recurrence interval) exceeds the fluvial evacuation time, leading to higher armouring ratios due to longer exposure of the bed surface to flow. If the grain size distribution of the bed is fine and armouring weak, the model predicts a lowering in the average channel slope. The ratio between the fluvial evacuation time and the pulse period constitutes a threshold that can help to quantify how a system responds to episodic disturbances.

2018 ◽  
Vol 6 (4) ◽  
pp. 1041-1057 ◽  
Author(s):  
Tobias Müller ◽  
Marwan A. Hassan

Abstract. In steep headwater reaches, episodic mass movements can deliver large volumes of sediment to fluvial channels. If these inputs of sediment occur with a high frequency and magnitude, the capacity of the stream to rework the supplied material can be exceeded for a significant amount of time. To study the equilibrium conditions in a channel following different episodic sediment supply regimes (defined by grain size distribution, frequency, and magnitude of events), we simulate sediment transport through an idealized reach with our numerical 1-D model “BESMo” (Bedload Scenario Model). The model performs well in replicating flume experiments of a similar scope (where sediment was fed constantly, in one, two, or four pulses) and allowed the exploration of alternative event sequences. We show that in these experiments, the order of events is not important in the long term, as the channel quickly recovers even from high magnitude events. In longer equilibrium simulations, we imposed different supply regimes on a channel, which after some time leads to an adjustment of slope, grain size, and sediment transport that is in equilibrium with the respective forcing conditions. We observe two modes of channel adjustment to episodic sediment supply. (1) High-frequency supply regimes lead to equilibrium slopes and armouring ratios that are like conditions in constant-feed simulations. In these cases, the period between pulses is shorter than a “fluvial evacuation time”, which we approximate as the time it takes to export a pulse of sediment under average transport conditions. (2) In low-frequency regimes the pulse period (i.e., recurrence interval) exceeds the “fluvial evacuation time”, leading to higher armouring ratios due to the longer exposure of the bed surface to flow. If the grain size distribution of the bed is fine and armouring weak, the model predicts a decrease in the average channel slope. The ratio between the “fluvial evacuation time” and the pulse period constitutes a threshold that can help to quantify how a system responds to episodic disturbances.


2021 ◽  
Author(s):  
Spyros Pritsis ◽  
Nils Ruther ◽  
Kordula Schwarzwälder ◽  
Anastasios Stamou

<p>Nowadays, the aquatic biodiversity is highly under pressure due to anthropogenic changes of the rivers such hydraulic structures changing the diversity of flow and aquatic fauna as well as sediment continuity. This can have severe consequences on the fish population in the river reach. Fish are strongly depending on a certain substrate composition throughout all their life stages. Juveniles for example are depending on a certain availability of shelter in the substrate in order to survive this stage.</p><p>Therefore, we investigate the effects of changes in the sediment composition at a hydropower plant in Switzerland on the availability of potential shelter for juvenile fish. By utilizing the observed correlation between parameters describing the fine tail of a riverbed’s grain size distribution and shelter abundance for juvenile Atlantic salmon, we predict the available shelter in a river reach by using a 3D hydrodynamic numerical model directly coupled to a morphodynamic model. The initial substrate composition was assumed to be spatially uniform, its parameters based on a grain size distribution curve derived from collected sediment samples.</p><p>This model can now be used for habitat improvement scenario modeling. Based on the assumption that a specific mixture of sediment coming from upstream travelling through the river reach will positively influence the potential shelter availability, different scenarios can be investigated. The baseline for comparison was the simulation of the bed changes without any sediment supply from upstream. The baseline discharge was set to 100 m<sup>3</sup> /s and was applied for 24 hours. The resulting bed changes create a map of the potential shelter availability of this grain size mixture. Then, two scenarios with sediment inflow from the upstream boundary were simulated. One coarse and one fine mixture of sediment were chosen as inputs, with the goal of investigating their impact on shelter abundance. The former designed to have a positive effect while the latter expected to reduce interstitial voids in the substrate and have a negative effect on available shelter.</p><p>The investigation is conducted as part of the EU Horizon 2020 funded project FIThydro (funded under 727830)</p>


2018 ◽  
Vol 22 (1) ◽  
pp. 767-787 ◽  
Author(s):  
Teodor Petrut ◽  
Thomas Geay ◽  
Cédric Gervaise ◽  
Philippe Belleudy ◽  
Sebastien Zanker

Abstract. Monitoring sediment transport processes in rivers is of particular interest to engineers and scientists to assess the stability of rivers and hydraulic structures. Various methods for sediment transport process description were proposed using conventional or surrogate measurement techniques. This paper addresses the topic of the passive acoustic monitoring of bedload transport in rivers and especially the estimation of the bedload grain size distribution from self-generated noise. It discusses the feasibility of linking the acoustic signal spectrum shape to bedload grain sizes involved in elastic impacts with the river bed treated as a massive slab. Bedload grain size distribution is estimated by a regularized algebraic inversion scheme fed with the power spectrum density of river noise estimated from one hydrophone. The inversion methodology relies upon a physical model that predicts the acoustic field generated by the collision between rigid bodies. Here we proposed an analytic model of the acoustic energy spectrum generated by the impacts between a sphere and a slab. The proposed model computes the power spectral density of bedload noise using a linear system of analytic energy spectra weighted by the grain size distribution. The algebraic system of equations is then solved by least square optimization and solution regularization methods. The result of inversion leads directly to the estimation of the bedload grain size distribution. The inversion method was applied to real acoustic data from passive acoustics experiments realized on the Isère River, in France. The inversion of in situ measured spectra reveals good estimations of grain size distribution, fairly close to what was estimated by physical sampling instruments. These results illustrate the potential of the hydrophone technique to be used as a standalone method that could ensure high spatial and temporal resolution measurements for sediment transport in rivers.


2018 ◽  
Author(s):  
Jérémy Lepesqueur ◽  
Renaud Hostache ◽  
Núria Martínez-Carreras ◽  
Emmanuelle Montargès-Pelletier ◽  
Christophe Hissler

Abstract. Hydromorphodynamic models are powerful tools to predict the potential mobilization and transport of sediment in river ecosystems. Recent studies even showed that they are able to satisfyingly predict suspended sediment matter concentration in small river systems. However, modelling exercises often neglect suspended sediment properties (e.g. particle site distribution and density), even though such properties are known to directly control the sediment particle dynamics in the water column during rising and flood events. This study has two objectives. On the one hand, it aims at further developing an existing hydromorphodynamic model based on the dynamic coupling of TELEMAC-3D (v7p1) and SISYPHE (v7p1) in order to enable an enhanced parameterisation of the sediment grain size distribution with distributed sediment density. On the other hand, it aims at evaluating and discussing the added-value of the new development for improving sediment transport and riverbed evolution predictions. To this end, we evaluate the sensitivity of the model to sediment grain size distribution, sediment density and suspended sediment concentration at the upstream boundary condition. As a test case, the model is used to simulate a flood event in a small scale river, the Orne River in North-eastern France. The results show substantial discrepancies in bathymetry evolution depending on the model setup. Moreover, the sediment model based on an enhanced sediment grain size distribution (10 classes) and with distributed sediment density outperforms the model with only two sediment grain size classes in terms of simulated suspended sediment concentration.


Author(s):  
O.S. Olaniyan

Sediment transport rate depends on bed composition, flow hydraulics and sediment supply. There is a paucity of information on bedload transport in River Osun. In this study, bedload in River Osun was estimated using grain size distribution data to predict channel migration and mitigate flooding. Grab sampler was used to collect sediment samples at the sampling point across the river designated as T1-T4. Sieve analysis was carried out in triplicate on sediment from sampling points using standard methods. Discharge and cross-sectional area were measured between December 2017 and December 2018 at sampling stations using standard methods. The seasonal and bedload were estimated using standards equations. The percentage of bed material particles above 5mm and less than or equal to 2mm were 50 and 22.49%, respectively. The average median grain (d50) size was 2.4mm. The discharge and cross-sectional area across River Osun ranged (0.53-17.46) m3/s and (3.83-47.46) m2. The seasonal suspended and bedload across the river were (206.43×103 kg/annum) and 2,538.77×103(kg/annum), respectively. The estimated sediment load of River Osun could be useful in determining the dredging period at any point across the river where deposition of sediment could be monitored.


2013 ◽  
Vol 44 (2s) ◽  
Author(s):  
Gabriel Kaless ◽  
Mario A. Lenzi ◽  
Luca Mao

This paper presents a novel 2D-depth average model especially developed for gravel-bed rivers, named Lican-Leufú (Lican=pebble and Leufu=river, in Mapuche’s language, the native inhabitants of Central Patagonia, Argentina). The model consists of three components: a hydrodynamic, a sedimentological, and a morphological model. The flow of water is described by the depth-averaged Reynolds equations for unsteady, free-surface, shallow water flows. It includes the standard k-e model for turbulence closure. Sediment transport can be divided in different size classes (sand-gravel mixture) and the equilibrium approach is used for Exner’s equation. The amour layer is also included in the structure of the model and the surface grain size distribution is also allowed to evolve. The model simulates bank slides that enable channel widening. Models predictions were tested against a flume experiment where a static armour layer was developed under conditions of sediment starvations and general good agreements were found: the model predicted adequately the sediment transport, grain size of transported material, final armour grain size distribution and bed elevation.


2017 ◽  
Author(s):  
Teodor I. Petrut ◽  
Thomas Geay ◽  
Cédric Gervaise ◽  
Philippe Belleudy ◽  
Sebastien Zanker

Abstract. Monitoring sediment transport processes in rivers is of particular interest to engineers and scientists to assess the stability of rivers and hydraulic structures. Various methods for sediment transport processes description were proposed using conventional or surrogate measurement techniques. This paper addresses the topic of the passive acoustic monitoring of bedload transport in rivers and especially the estimation of the bedload grain size distribution from self-generated noise. It discusses the feasibility of linking the acoustic signal spectrum shape to bedload-grain sizes involved in elastic impacts with the bed river treated as a massive slab. Bedload grain size distribution is estimated by a regularized algebraic inversion scheme fed with the power spectrum density of river noise estimated from one hydrophone. The inversion methodology relies upon a physical model which predicts the acoustic field generated by the collision between rigid bodies. Here it is proposed an analytic model of the acoustic power spectrum generated by the impacts between a sphere and a slab. The proposed model is written as linear system of analytic power spectra weighted by the grain size distribution. The algebraic system of equations is then solved by least square optimization and solution regularization methods. The result of inversion leads directly to the estimation of the bedload grain size distribution. The inversion method was applied on real acoustic data from passive acoustics experiments realized on the Isère River, in France. The inversion of in situ measured spectra reveals good estimations of grain size distribution, fairly close to what was estimated by physical sampling instruments. These results illustrate the potential of the hydrophone technique to be used as a standalone method that could ensures high spatial and temporal resolution measurements for sediment transport in rivers.


Author(s):  
Václav Škarpich ◽  
Tomáš Galia ◽  
Jan Hradecký

This paper summarizes results of grain-size distribution of gravel bars and transport conditions in the context of sediment sources in the confl uence area of the Morávka and Mohelnice rivers (Moravskoslezské Beskydy Mts). We deal with a hypothesis that general changes of grain-size distribution of gravel bars are controlled by disconnection in sediment flux in the Morávka River and, by contrast, that higher sediment delivery is related to the Mohelnice river basin. The second focus is the evaluation of fluvial transport parameters of a channel influenced by control works and sediment mining. Bed load transport research was conducted with the application of BAGS (Bedload Assessment for Gravel-bed Streams) spreadsheet-based program. Sediment analysis of the channel confluence showed limited sediment supply character indicated by coarser sediment delivery from the Morávka River. This fact is related to the effect of hungry water caused mainly by the Morávka Reservoir. On the other hand, the Mohelnice River displayed trends of relatively higher sediment delivery without potential disconnectivities in sediment flux. Results of this analysis brought an insight into a potential scheme of the future development of the studied reaches. We suppose preservation of recent trends in case of the occurrence of signifi cant changes in land use or watershed management.


2021 ◽  
Vol 8 ◽  
Author(s):  
Haozhuang Wang ◽  
Jürgen Titschack ◽  
Claudia Wienberg ◽  
Chelsea Korpanty ◽  
Dierk Hebbeln

The formation of cold-water coral (CWC) mounds is commonly seen as being the result of the sustained growth of framework-forming CWCs and the concurrent supply and deposition of terrigenous sediments under energetic hydrodynamic conditions. Yet only a limited number of studies investigated the complex interplay of the various hydrodynamic, sedimentological and biological processes involved in mound formation, which, however, focused on the environmental conditions promoting coral growth. Therefore, we are still lacking an in-depth understanding of the processes allowing the on-mound deposition of hemipelagic sediments, which contribute to two thirds of coral mound deposits. To investigate these processes over geological time and to evaluate their contribution to coral mound formation, we reconstructed changes in sediment transport and deposition by comparing sedimentological parameters (grain-size distribution, sediment composition, accumulation rates) of two sediment cores collected from a Mediterranean coral mound and the adjacent seafloor (off-mound). Our results showed that under a turbulent hydrodynamic regime promoting coral growth during the Early Holocene, the deposition of fine siliciclastic sediments shifted from the open seafloor to the coral mounds. This led to a high average mound aggradation rate of >130 cm kyr–1, while sedimentation rates in the adjacent off-mound area at the same time did not exceed 10 cm kyr–1. Thereby, the baffling of suspended sediments by the coral framework and their deposition within the ecological accommodation space provided by the corals seem to be key processes for mound formation. Although, it is commonly accepted that these processes play important roles in various sedimentary environments, our study provided for the first time, core-based empirical data proving the efficiency of these processes in coral mound environment. In addition, our approach to compare the grain-size distribution of the siliciclastic sediments deposited concurrently on a coral mound and on the adjacent seafloor allowed us to investigate the integrated influence of coral mound morphology and coral framework on the mound formation process. Based on these results, this study provides the first conceptual model for coral mound formation by applying sequence stratigraphic concepts, which highlights the interplay of the coral-framework baffling capacity, coral-derived ecological accommodation space and sediment supply.


Sign in / Sign up

Export Citation Format

Share Document