bed elevation
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 50)

H-INDEX

21
(FIVE YEARS 3)

2022 ◽  
Vol 10 (1) ◽  
pp. 106
Author(s):  
Dongfang Liang ◽  
Jie Huang ◽  
Jingxin Zhang ◽  
Shujing Shi ◽  
Nichenggong Zhu ◽  
...  

In the past few decades, there have been many numerical studies on the scour around offshore pipelines, most of which concern two-dimensional setups, with the pipeline infinitely long and the flow perpendicular to the pipeline. Based on the Ansys FLUENT flow solver, this study establishes a numerical tool to study the three-dimensional scour around pipelines of finite lengths. The user-defined functions are written to calculate the sediment transport rate, update the bed elevation, and adapt the computational mesh to the new boundary. The correctness of the model has been verified against the measurements of the conventional two-dimensional scour around a long pipe and the three-dimensional scour around a sphere. A series of computations are subsequently carried out to discover how the scour hole is dependent on the pipeline length. It is found that the equilibrium scour depth increases with the pipeline length until the pipeline length exceeds four times the pipe diameter.


2022 ◽  
Vol 10 (1) ◽  
pp. 108
Author(s):  
Cuiping Kuang ◽  
Jiadong Fan ◽  
Zhichao Dong ◽  
Qingping Zou ◽  
Xin Cong ◽  
...  

A tidal lagoon system has multiple environmental, societal, and economic implications. To investigate the mechanism of influence of the geomorphological evolution of a tidal lagoon, the effect of critical erosion shear stress, critical deposition shear stress, sediment settling velocity, and initial bed elevation were assessed by applying the MIKE hydro- and morpho-dynamic model to a typical tidal lagoon, Qilihai Lagoon. According to the simulation results, without sediment supply, an increase of critical erosion, deposition shear stress, or sediment settling velocity gives rise to tidal networks with a stable terrain. Such an equilibrium state can be defined as when the change of net erosion has little variation, which can be achieved due to counter actions between the erosion and deposition effect. Moreover, the influence of the initial bed elevation depends on the lowest tidal level. When the initial bed elevation is below the lowest tidal level, the tidal networks tend to be fully developed. A Spearman correlation analysis indicated that the geomorphological evolution is more sensitive to critical erosion or deposition shear stress than sediment settling velocity and initial bed elevation. Exponential sea level rise contributes to more intensive erosion than the linear or the parabolic sea level rise in the long-term evolution of a tidal lagoon.


2021 ◽  
Author(s):  
Judith Zomer ◽  
Suleyman Naqshband ◽  
Ton Hoitink

Abstract. Systematic identification and characterization of bedforms from bathymetric data are crucial in many studies focused on fluvial processes. Automated and accurate processing of bed elevation data is challenging where dune fields are complex, irregular and, especially, where multiple scales co-exist. Here, we introduce a new tool to quantify dune properties from bathymetric data representing multiple dune scales. A first step in the procedure is to decompose the bathymetric data based on a LOESS algorithm. Steep dune lee side slopes are accounted for by implementing objective breaks in the algorithm, accounting for discontinuities in the bed level profiles, often occurring at the toe of the lee side slope of dunes. The steep lee slopes are then approximated by fitting a sigmoid function. Following the decomposition of the bathymetric data, bedforms are identified based on zero-crossing, and the relevant properties are calculated. The approach to decompose bedforms adopted in the presented tool is particularly applicable where secondary dunes are large and thus filtering could easily lead to undesired smoothing of the primary morphology. Application of the tool to two bathymetric maps demonstrates that the decomposition and identification are successful, as the lee side slopes are better preserved.


2021 ◽  
Vol 930 (1) ◽  
pp. 012076
Author(s):  
M F Khaldirian ◽  
A P Rahardjo ◽  
D Luknanto ◽  
R D R Sondi

Abstract Most of the approaches in numerical modeling techniques are based on the Eulerian coordinate system. This approach faces difficulty in simulating flash flood front propagation. This paper shows an alternative method that implements a numerical modeling technique based on the Lagrangian coordinate system to simulate the water of debris flow. As for the interaction with the riverbed, the simulation uses an Eulerian coordinate system. The method uses the conservative and momentum equations of water and sediment mixture in the Lagrangian form. Source terms represent deposition and erosion. The riverbed in the Eulerian coordinate system interacts with the flow of the mixture. At every step, the algorithm evaluates the relative position of moving nodes of the flow part to the fixed nodes of the riverbed. Computation of advancing velocity and depth uses the riverbed elevation, slope data, and the bed elevation change computation uses the erosion or deposition data of the flow on the moving nodes. Spatial discretization is implementing the Galerkin method. Furthermore, temporal discretization is implementing the forward difference scheme. Test runs show that the algorithm can simulate downward, upward, and reflected backward 1-D flow cases. Two-D model tests and comparisons with SIMLAR software show that the algorithm works in simulating debris flow.


Author(s):  
Cybele Lara Abad ◽  
Cordella P. Formalejo ◽  
Dan Meynard L. Mantaring

AbstractStudies have shown that a ventilator associated pneumonia (VAP) bundle significantly decreases VAP rates. In this study, we evaluated existing knowledge, practices, and adherence of nurses and infection control preventionists (ICP) to the VAP bundles of care in the intensive care unit (ICU) by using qualitative and quantitative tools. Of 60 participants (56 nurses and 4 ICPs), mean knowledge score regarding specific evidence-based VAP guidelines was 5 (range 3–8) out of 10 points. Self-reported adherence to the VAP bundle ranged from 38.5 to 100%, with perfect compliance to head of bed elevation, and poorest compliance with readiness to extubate. Overall VAP median bundle compliance was 84.6%. Knowledge regarding specific components of VAP prevention is lacking. Formal training and interactive educational sessions should be performed regularly to assess the competency of key personnel regarding the VAP bundle, especially in the context of rapid nurse turnover. Incentives for retention of nurses should also be considered, so that knowledge of hospital specific initiatives such as the VAP bundles of care can be cultivated over time.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2588
Author(s):  
Hao-Che Ho ◽  
Yen-Ming Chiang ◽  
Che-Chi Lin ◽  
Hong-Yuan Lee ◽  
Cheng-Chia Huang

The change in movable beds is related to the mechanisms of sediment transport and hydrodynamics. Numerical modelling with empirical equations and the simplified momentum equation is the common means to analyze the complicated sediment transport processing in river channels. The optimization of parameters is essential to obtain the proper results. Inadequate parameters would cause errors during the simulation process and accumulate the errors with long-time simulation. The optimized parameter combination for numerical modelling, however, is rarely discussed. This study adopted the ensemble method to simulate the change in the river channel, with a single model combined with multiple parameters. The optimized parameter combinations for a given river reach are investigated. Two river basins, located in Taiwan, were used as study cases, to simulate river morphology through the SRH-2D, which was developed by the U.S. Bureau of Reclamation. The input parameters related to the sediment transport module were randomly selected within a reasonable range. The parameter sets with proper results were selected as ensemble members. The concentration of sedimentation and bathymetry elevation was used to conduct the calibration. Both study cases show that 20 ensemble members were good enough to capture the results and save simulation time. However, when the ensemble members increased to 100, there was no significant improvement, but a longer simulation time. The result showed that the peak concentration and the occurrence of time could be predicted by the ensemble size of 20. Moreover, with consideration of the bed elevation as the target, the result showed that this method could quantitatively simulate the change in bed elevation. With both cases, this study showed that the ensemble method is a suitable approach for river morphology numerical modelling. The ensemble size of 20 can effectively obtain the result and reduce the uncertainty for sediment transport simulation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lucas Mander ◽  
Luca Scapin ◽  
Chris B. Thaxter ◽  
Rodney M. Forster ◽  
Niall H. K. Burton

Estuaries have historically been subject to considerable habitat loss, and continue to be subjected to such in areas where the natural landward migration of intertidal habitats is constrained by hard coastal defences. Thus, in estuaries where direct (e.g., port development) or indirect (e.g., sea level rise) processes are predicted to threaten intertidal habitats and associated waterbird species, there is a regulatory requirement to produce compensatory intertidal habitats. Managed realignment (MR) is a shoreline management practise that is undertaken to build sustainable coastal defences and create intertidal habitats in estuaries. This nature-based solution brings multiple benefits in the form of carbon storage, increased resilience to flooding, and, potentially, the formation of new habitats, which is the topic of this study. A 75-ha site at the Paull Holme Strays (Humber Estuary, United Kingdom) was monitored over a 10-year period following MR to examine the change in the abundance of waterbirds in the chosen site in response to the physical processes occurring there. Using digital terrain models (DTMs) collected via light detection and ranging (LiDAR), we examined how four compensatory target species responded to changes in elevation after the creation of the site. It was shown that the very rapid accretion of estuarine sediment occurred in the first decade of the new re-created intertidal, which, over time, led to changes in the numbers of benthic foraging birds supported. Furthermore, elevation change was also driven by this sediment accretion, the rate of which depended on the initial bed elevation of the sectors within the site. Ten years after the recreation of the habitat, the spatial heterogeneity in the bed elevation remained high; however, the sectors with the lowest elevations accreted the most over the 10-year period. The foraging number of the four waterbird species that colonised the MR site significantly declined above a certain elevation, with this effect being most pronounced for the Eurasian curlew (Numenius arquata). The number of common shelducks (Tadorna tadorna), dunlins (Calidris alpina), and common redshanks (Tringa totanus) declined significantly after initial peaks 5–7 years after the creation of the site, reflecting the ongoing elevation changes. Thus, this study highlighted the need for long-term studies to understand how species respond to large-scale habitat construction. It can also aid in predicting the suitability of an MR site for waterbirds in the medium and long term.


2021 ◽  
Vol 11 (1) ◽  
pp. 67-85
Author(s):  
Polina Lemenkova

This paper presents the GRASS GIS-based thematic mapping of Antarctica using scripting approach and associated datasets on topography and geophysics. The state-of-the art in cartographic development points at two important aspects. The first one comprises shell scripting promoted repeatability of the GIS technique, increased automatization in cartographic workflow, and compatibility of GRASS with Python, PROJ and GDAL libraries which enables advanced geospatial data processing: converting formats, re-projecting and spatial analysis. The second aspect is that data visualization greatly influences geologic research through improving the interpretation between the Antarctic glaciation and surface. This includes the machine learning algorithms of image classification enabling to distinguish between glacier and non-glacier surfaces through automatically partitioning data and analysis of various types of surfaces. Presented detailed maps of Antarctic include visualized datasets from the ETOPO1, GlobSed, EGM96 and Bedmap2 projects. The grids include bed and surface elevation, ETOPO1-based bathymetry and topography, bed, ice and sediment thickness, grounded bed uncertainty, subglacial bed elevation, geoid undulations, ice mask grounded and shelves. Data show the distribution of the present-day glacier, geophysical fields and topographic landforms for analysis of processes and correlations between the geophysical and geological phenomena. Advances in scripting cartography are significant contributions to the geological and glaciological research. Processing high-resolution datasets of Southern Ocean retrieved by remote sensing methods present new steps in automatization of the digital mapping, as presented in this research, and promotes comprehensive monitoring of geological, permafrost and glacial processes in Antarctica. All maps have been plotted using GRASS GIS version 7.8. with technical details of scripts described and interpreted.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1566
Author(s):  
Barbara Proença ◽  
Florian Ganthy ◽  
Richard Michalet ◽  
Aldo Sottolichio

Field measurements of bed elevation and related wave events were performed within a tidal marsh, on two cordgrass species, Spartina anglica (exotic) and Spartina maritima (native), in the Bay of Arcachon (SW France). Bed- and water-level time series were used to infer on the sediment behavior patterns from short to long term. A consistent response was found between the bed-level variation and the wave forcing, with erosion occurring during storms and accretion during low energy periods. Such behavior was observed within the two species, but the magnitude of bed-level variation was higher within the native than the exotic Spartina. These differences, in the order of millimeters, were explained by the opposite allocation of biomass of the two species. On the long term, the sedimentation/erosion patterns were dominated by episodic storm events. A general sediment deficit was observed on the site, suggested by an overall bed-level decrease registered within both species. However, further verification of within species variation needs to be considered when drawing conclusions. Despite possible qualitative limitations of the experimental design, due to single point survey, this work provides original and considerable field data to the understanding the different species ability to influence bed sediment stabilization and their potential to build marsh from the mudflat pioneer stage. Such information is valuable for coastal management in the context of global change.


Sign in / Sign up

Export Citation Format

Share Document