scholarly journals Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade

2011 ◽  
Vol 15 (5) ◽  
pp. 1641-1660 ◽  
Author(s):  
M. Fader ◽  
D. Gerten ◽  
M. Thammer ◽  
J. Heinke ◽  
H. Lotze-Campen ◽  
...  

Abstract. The need to increase food production for a growing world population makes an assessment of global agricultural water productivities and virtual water flows important. Using the hydrology and agro-biosphere model LPJmL, we quantify at 0.5° resolution the amount of blue and green water (irrigation and precipitation water) needed to produce one unit of crop yield, for 11 of the world's major crop types. Based on these, we also quantify the agricultural water footprints (WFP) of all countries, for the period 1998–2002, distinguishing internal and external WFP (virtual water imported from other countries) and their blue and green components, respectively. Moreover, we calculate water savings and losses, and for the first time also land savings and losses, through international trade with these products. The consistent separation of blue and green water flows and footprints shows that green water globally dominates both the internal and external WFP (84 % of the global WFP and 94 % of the external WFP rely on green water). While no country ranks among the top ten with respect to all water footprints calculated here, Pakistan and Iran demonstrate high absolute and per capita blue WFP, and the US and India demonstrate high absolute green and blue WFPs. The external WFPs are relatively small (6 % of the total global blue WFP, 16 % of the total global green WFP). Nevertheless, current trade of the products considered here saves significant water volumes and land areas (~263 km3 and ~41 Mha, respectively, equivalent to 5 % of the sowing area of the considered crops and 3.5 % of the annual precipitation on this area). Relating the proportions of external to internal blue/green WFP to the per capita WFPs allows recognizing that only a few countries consume more water from abroad than from their own territory and have at the same time above-average WFPs. Thus, countries with high per capita water consumption affect mainly the water availability in their own country. Finally, this study finds that flows/savings of both virtual water and virtual land need to be analysed together, since they are intrinsically related.

2011 ◽  
Vol 8 (1) ◽  
pp. 483-527 ◽  
Author(s):  
M. Fader ◽  
D. Gerten ◽  
M. Thammer ◽  
J. Heinke ◽  
H. Lotze-Campen ◽  
...  

Abstract. The need to increase food production for a growing world population makes an assessment of global agricultural water productivities and virtual water flows important. Using the hydrology and agro-biosphere model LPJmL, we quantify at 0.5° resolution the blue (irrigation water) and green (precipitation water) virtual water content, i.e. the inverse of water productivity, for 11 of the world's major crop types. Based on these, we also quantify the water footprints (WFP) of all countries, for the period 1998-2002, distinguishing internal and external WFP (virtual water imported from other countries) and their blue and green components, respectively. Moreover, we calculate water savings and losses, and for the first time also land savings and losses, through international trade with these products. The consistent separation of blue and green water flows and footprints, which is needed due to the different sources and opportunity costs of these two water pools, shows that green water globally dominates both the internal and external WFP (84% of the global WFP and 94% of the external WFP rely on green water). Accordingly, some of the major exporters of the crops considered here (e.g. Argentina, Canada) export mainly green virtual water, but traditional rice exporters such as India and Pakistan mainly export blue virtual water. The external WFPs are found to be relatively small (6% of the total global blue WFP, 16% of the total global green WFP). Nevertheless, current trade saves significant water volumes and land areas (~263 km3 and ~41 Mha, respectively, equivalent to 5% of the sowing area of the crops considered here and 3.5% of the annual precipitation on this area). Linking the proportions of external to internal blue/green WFP with the per capita WFPs allows recognizing that only a few countries consume more water from abroad than from their own territory and have at the same time above average WFPs. Thus, countries with high levels of per capita water consumption affect mainly the water situation in their own country.


2021 ◽  
Author(s):  
Elena De Petrillo ◽  
Marta Tuninetti ◽  
Francesco Laio

<p>Through the international trade of agricultural goods, water resources that are physically used in the country of production are virtually transferred to the country of consumption. Food trade leads to a global redistribution of freshwater resources, thus shaping distant interdependencies among countries. Recent studies have shown how agricultural trade drives an outsourcing of environmental impacts pertaining to depletion and pollution of freshwater resources, and eutrophication of river bodies in distant producer countries. What is less clear is how the final consumer – being an individual, a company, or a community- impacts the water resources of producer countries at a subnational scale. Indeed, the variability of sub-national water footprint (WF in m<sup>3</sup>/tonne) due to climate, soil properties, irrigation practices, and fertilizer inputs is generally lost in trade analyses, as most trade data are only available at the country scale. The latest version of the Spatially Explicit Information on Production to Consumption Systems model  (SEI-PCS) by Trase provides detailed data on single trade flows (in tonne) along the crop supply chain: from local municipalities- to exporter companies- to importer companies – to the final consumer countries. These data allow us to capitalize on the high-resolution data of agricultural WF available in the literature, in order to quantify the sub-national virtual water flows behind food trade. As a first step, we assess the detailed soybean trade between Brazil and Italy. This assessment is relevant for water management because the global soybean flow reaching Italy may be traced back to 374 municipalities with heterogeneous agricultural practises and water use efficiency. Results show that the largest flow of virtual water from a Brazilian municipality to Italy -3.52e+07 m<sup>3</sup> (3% of the total export flow)- comes from Sorriso in the State of Mato Grosso. Conversely, the highest flow of blue water -1.56e+05 m<sup>3</sup>- comes from Jaguarão, in the State of Rio Grande do Sul, located in the Brazilian Pampa. Further, the analysis at the company scale reveals that as many as 37 exporting companies can be identified exchanging to Italy;  Bianchini S.A is the largest virtual water trader (1.88 e+08 m<sup>3</sup> of green water and 3,92 e+06 m<sup>3</sup> of blue water), followed by COFCO (1,06 e+08 m<sup>3</sup> of green water and 6.62 m<sup>3</sup> of blue water)  and Cargill ( 6.96 e+07 m<sup>3</sup> of green water and 2.80 e+02 m<sup>3</sup> of blue water). By building the bipartite network of importing companies and municipalities originating the fluxes we are able to efficiently disaggregate the supply chains , providing novel tools to build sustainable water management strategies.</p>


2018 ◽  
Vol 22 (5) ◽  
pp. 3007-3032 ◽  
Author(s):  
Richard R. Rushforth ◽  
Benjamin L. Ruddell

Abstract. This paper quantifies and maps a spatially detailed and economically complete blue water footprint for the United States, utilizing the National Water Economy Database version 1.1 (NWED). NWED utilizes multiple mesoscale (county-level) federal data resources from the United States Geological Survey (USGS), the United States Department of Agriculture (USDA), the US Energy Information Administration (EIA), the US Department of Transportation (USDOT), the US Department of Energy (USDOE), and the US Bureau of Labor Statistics (BLS) to quantify water use, economic trade, and commodity flows to construct this water footprint. Results corroborate previous studies in both the magnitude of the US water footprint (F) and in the observed pattern of virtual water flows. Four virtual water accounting scenarios were developed with minimum (Min), median (Med), and maximum (Max) consumptive use scenarios and a withdrawal-based scenario. The median water footprint (FCUMed) of the US is 181 966 Mm3 (FWithdrawal: 400 844 Mm3; FCUMax: 222 144 Mm3; FCUMin: 61 117 Mm3) and the median per capita water footprint (FCUMed′) of the US is 589 m3 per capita (FWithdrawal′: 1298 m3 per capita; FCUMax′: 720 m3 per capita; FCUMin′: 198 m3 per capita). The US hydroeconomic network is centered on cities. Approximately 58 % of US water consumption is for direct and indirect use by cities. Further, the water footprint of agriculture and livestock is 93 % of the total US blue water footprint, and is dominated by irrigated agriculture in the western US. The water footprint of the industrial, domestic, and power economic sectors is centered on population centers, while the water footprint of the mining sector is highly dependent on the location of mineral resources. Owing to uncertainty in consumptive use coefficients alone, the mesoscale blue water footprint uncertainty ranges from 63 to over 99 % depending on location. Harmonized region-specific, economic-sector-specific consumption coefficients are necessary to reduce water footprint uncertainties and to better understand the human economy's water use impact on the hydrosphere.


2006 ◽  
Vol 10 (3) ◽  
pp. 455-468 ◽  
Author(s):  
A. K. Chapagain ◽  
A. Y. Hoekstra ◽  
H. H. G. Savenije

Abstract. Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The paper analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been required in the importing countries if all imported agricultural products would have been produced domestically is 1605 Gm3/yr. These products are however being produced with only 1253 Gm3/yr in the exporting countries, saving global water resources by 352 Gm3/yr. This saving is 28 per cent of the international virtual water flows related to the trade of agricultural products and 6 per cent of the global water use in agriculture. National policy makers are however not interested in global water savings but in the status of national water resources. Egypt imports wheat and in doing so saves 3.6 Gm3/yr of its national water resources. Water use for producing export commodities can be beneficial, as for instance in Cote d'Ivoire, Ghana and Brazil, where the use of green water resources (mainly through rain-fed agriculture) for the production of stimulant crops for export has a positive economic impact on the national economy. However, export of 28 Gm3/yr of national water from Thailand related to rice export is at the cost of additional pressure on its blue water resources. Importing a product which has a relatively high ratio of green to blue virtual water content saves global blue water resources that generally have a higher opportunity cost than green water.


2017 ◽  
Vol 6 (3) ◽  
pp. 86-96
Author(s):  
Purwana Satriyo ◽  
Hidayat Pawitan ◽  
Yanuar J Purwanto ◽  
Yayat Hidayat

Water is one the most important natural resources to maintain human life and all other living things in the earth. Around 65% water were consumed for drinking purpose, while others were used for daily needs. The increasing amount of work on water use and scarcity in relation to consumption and trade has led to the emergence of the field of Water Footprint (WF). Climate change, rural development, world population growth and industrialization have placed considerable stress on the local availability of water resources. Thus, it is necessary to perform study in order to analyze water demands and supply for sustainable water availability. Recently, water footprint analysis has been widely draw attention to the scientists and engineers. The water footprint analysis is closely related with virtual water from which it is defined as total water volume used for consumption and trade. The main aim of this present study is to analyze and assess the total water requirement based on community water footprint in Krueng Aceh watershed area. The virtual water used in this study are dominant consumption food commodities. The result shows that water footprint per capita in Krueng Aceh watershed area was 674.52 m3/year. Water footprint for rural and urban population were 608.27 m3/year and 740.77 m3/year respectively. The WF of food consumption in urban area of Krueng Aceh watershed is 690.74 m3 / capita / year and 584.22 m3/capita/year or average 625.69 m3/capita/year, while for non-food, the WF per capita is 24.05 m3/year in rural or 32.46% of the total water footprint. Non-food consumption per capita in Krueng Aceh and in urban areas is 50.03 m3/year or 67.53%. The total water demand based on the water footprint is 378,906,655.05 m3 in 2015 which is consumed by most of residents in the Krueng Aceh watershed area. Furthermore, total WF in rural and urban area are 193,489,128.95 m3 and 185,417,526.10 m3 respectively.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Pier Paolo Miglietta ◽  
Christian Fischer ◽  
Federica De Leo

PurposeIn a globalized economic system, the role of agrifood production is to ensure at the same time both the population's livelihood and environmental resource conservation. The present study aims at expanding the debate on the potentials of the fair-trade in terms of environmental sustainability.Design/methodology/approachThe research presents a methodology divided into three phases: (1) the identification of the water footprint values associated with the production of bananas, cocoa and coffee imported from developing countries to Italy; (2) the calculation of the virtual water volumes used to produce the crops imported from developing countries to Italy through fair-trade; (3) the analysis of the economic water productivity, obtained by the fair-trade premium, for bananas, cocoa and coffee.FindingsThe results of this study identified and measured the amount of virtual water flows and water savings or losses deriving from the fair-trade of bananas, cocoa and coffee. The average virtual water flow related to the fair-trade imports in Italy amounts to 7.27 million m3 for bananas, 22,275 m3 for cocoa and 14,334 m3 for coffee. The research findings also highlight that fair-trade and the related premium ensures at the same time the achievement of social and institutional purposes but also the remuneration of virtual water used within the life cycle of the imported crops.Originality/valuePrevious scientific literature showed that fair-trade premium has commonly been used to finance environmental protection. No study has evaluated the environmental impacts associated with fair-trade, nor the monetary value associated with the natural resources exploited to produce crops to be exported. This empirical paper fills a literature gap in terms of identification, measurement and evaluation of virtual water flows along the supply chain processes of some fair-traded crops, also providing, through the economic water productivity approach, a useful tool for decision-makers.


2005 ◽  
Vol 2 (6) ◽  
pp. 2219-2251 ◽  
Author(s):  
A. K. Chapagain ◽  
A. Y. Hoekstra ◽  
H. H. G. Savenije

Abstract. Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The paper analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been required in the importing countries if all imported agricultural products would have been produced domestically is 1605 Gm3/yr. These products are however being produced with only 1253 Gm3/yr in the exporting countries, saving global water resources by 352 Gm3/yr. This saving is 28% of the international virtual water flows related to the trade of agricultural products and 6% of the global water use in agriculture. National policy makers are however not interested in global water savings but in the status of national water resources. Egypt imports wheat and in doing so saves 3.6 Gm3/yr of its national water resources. Water use for producing export commodities can be beneficial, as for instance in Cote d'Ivoire, Ghana and Brazil, where the use of green water resources (mainly through rain-fed agriculture) for the production of stimulant crops for export has a positive economic impact on the national economy. However, export of 28 Gm3/yr of national water from Thailand related to rice export is at the cost of additional pressure on its blue water resources. Importing a product which has a relatively high ratio of green to blue virtual water content saves global blue water resources that generally have a higher opportunity cost than green water.


2015 ◽  
pp. 30-53
Author(s):  
V. Popov

This paper examines the trajectory of growth in the Global South. Before the 1500s all countries were roughly at the same level of development, but from the 1500s Western countries started to grow faster than the rest of the world and PPP GDP per capita by 1950 in the US, the richest Western nation, was nearly 5 times higher than the world average and 2 times higher than in Western Europe. Since 1950 this ratio stabilized - not only Western Europe and Japan improved their relative standing in per capita income versus the US, but also East Asia, South Asia and some developing countries in other regions started to bridge the gap with the West. After nearly half of the millennium of growing economic divergence, the world seems to have entered the era of convergence. The factors behind these trends are analyzed; implications for the future and possible scenarios are considered.


2010 ◽  
Vol 10 (5) ◽  
pp. 831-840 ◽  
Author(s):  
Ángel De Miguel ◽  
Eloy García ◽  
Irene De Buestamante

Virtual water is defined as the water needed to produce a product. We can use virtual water flow calculations to estimate the water efficiency of a country, as well as its economic dependence on water resources. Former studies on this area have focused on quantifying the virtual water flows between countries, in an international context. In this study we reduce the action framework to regions within a country, determining the virtual water balance between two Spanish regions: Castilla-La Mancha and Murcia. In 2004, Castilla-La Mancha exported to Murcia 2,453,442 tons of commercial products, from which 1,191,628 tons were agricultural goods. In terms of virtual water, it means 1,365 hm3, including food-processing, and industrial products. It is necessary to add 350 hm3 to the result, because of the water transfer (Tajo-Segura transfer) between the rivers basins of these regions, so the final virtual water number, in 2004, was 1,715 hm3. The other way round, Murcia exported in 2004 2,069,000 tons of products, from which 490,351 tons were agricultural goods. That supposes 712 hm3 of virtual water. Virtual water flow is unbalanced and displaced towards Murcia with a difference of 1,003 hm3.


Sign in / Sign up

Export Citation Format

Share Document