scholarly journals Impact of the Hoa Binh dam (Vietnam) on water and sediment budgets in the Red River basin and delta

2014 ◽  
Vol 18 (10) ◽  
pp. 3987-4005 ◽  
Author(s):  
V. D. Vinh ◽  
S. Ouillon ◽  
T. D. Thanh ◽  
L. V. Chu

Abstract. The Hoa Binh dam (HBD), located on a tributary of the Red River in Vietnam, has a capacity of 9.45 × 109 m3 and was commissioned in December 1988. Although it is important for flood prevention, electricity production and irrigation in northern Vietnam, the Hoa Binh dam has also highly influenced the suspended sediment distribution in the lower Red River basin, in the delta and in the coastal zone. Its impact was analysed from a 50-year data set of water discharge and suspended sediment concentration (1960–2010), and the distribution of water and sediment across the nine mouths of the delta was simulated using the MIKE11 numerical model before and after the dam settlement. Although water discharge at the delta inlet decreased by only 9%, the yearly suspended sediment flux dropped, on average, by 61% at Son Tay near Hanoi (from 119 to 46 × 106 t yr−1). Along the coast, reduced sedimentation rates are coincident with the lower sediment delivery observed since the impoundment of the Hoa Binh dam. Water regulation has led to decreased water discharge in the wet season (−14% in the Red River at Son Tay) and increased water discharge in the dry season (+12% at the same station). The ratios of water and suspended sediment flows, as compared to the total flows in the nine mouths, increased in the northern and southern estuaries and decreased in the central, main Ba Lat mouth. The increasing volume of dredged sediments in the Haiphong harbour is evidence of the silting up of the northern estuary of Cam–Bach Dang. The effect of tidal pumping on enhanced flow occurring in the dry season and resulting from changed water regulation is discussed as a possible cause of the enhanced siltation of the estuary after Hoa Binh dam impoundment.

2014 ◽  
Vol 11 (1) ◽  
pp. 333-370 ◽  
Author(s):  
D. V. Vu ◽  
S. Ouillon ◽  
D. T. Tran ◽  
V. C. La

Abstract. The Hoa Binh Dam, located on a tributary of the Red River in Vietnam, has a capacity of 9.45 × 109 m3 and was commissioned in December 1988. Although being important for flood prevention, electricity production, and irrigation in northern Vietnam, the Hoa Binh Dam has also highly influenced the suspended sediment distribution in the lower Red River basin, in the delta and in the coastal zone. Its impact was analysed from 50 yr dataset of water discharge and suspended sediment concentration (1960–2010) and the distribution of water and sediment across the nine mouths of the delta was calculated using the MIKE 11 numerical model before and after the dam settlement. Although water discharge at the delta inlet decreased by only 8.8%, the yearly suspended sediment flux dropped, on average from 119 to 43 × 106 t yr−1 at Son Tay near Hanoi, and from 85 to 35 × 106 t yr−1 in the river mouths. Water regulation has led to decreased water discharge in the wet season and increased water discharge in the dry season. Suspended sediment discharge proportionally increased in northern and southern estuaries and decreased through the main and central Ba Lat mouth. Tidal pumping, which causes a net sediment flux from the coast to the estuary at low discharge, is high in the northern delta, as a consequence of the high tidal range (up to 4.5 m in spring tide; diurnal tide). The shifts in the dynamic and characteristics of the turbidity maximum zone in the Cam-Bach Dang estuary are probably the cause of the enhanced sediment deposition in the Haiphong harbor. Along the coast, the reduced sedimentation rates are coincident with the lower sediment delivery that has been observed since the impoundment of the Hoa Binh Dam.


2021 ◽  
Vol 13 (9) ◽  
pp. 4926
Author(s):  
Nguyen Duc Luong ◽  
Nguyen Hoang Hiep ◽  
Thi Hieu Bui

The increasing serious droughts recently might have significant impacts on socioeconomic development in the Red River basin (RRB). This study applied the variable infiltration capacity (VIC) model to investigate spatio-temporal dynamics of soil moisture in the northeast, northwest, and Red River Delta (RRD) regions of the RRB part belongs to territory of Vietnam. The soil moisture dataset simulated for 10 years (2005–2014) was utilized to establish the soil moisture anomaly percentage index (SMAPI) for assessing intensity of agricultural drought. Soil moisture appeared to co-vary with precipitation, air temperature, evapotranspiration, and various features of land cover, topography, and soil type in three regions of the RRB. SMAPI analysis revealed that more areas in the northeast experienced severe droughts compared to those in other regions, especially in the dry season and transitional months. Meanwhile, the northwest mainly suffered from mild drought and a slightly wet condition during the dry season. Different from that, the RRD mainly had moderately to very wet conditions throughout the year. The areas of both agricultural and forested lands associated with severe drought in the dry season were larger than those in the wet season. Generally, VIC-based soil moisture approach offered a feasible solution for improving soil moisture and agricultural drought monitoring capabilities at the regional scale.


CATENA ◽  
2021 ◽  
Vol 197 ◽  
pp. 104958 ◽  
Author(s):  
Xi Wei ◽  
Sabine Sauvage ◽  
Sylvain Ouillon ◽  
Thi Phuong Quynh Le ◽  
Didier Orange ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 958 ◽  
Author(s):  
Xi Wei ◽  
Sabine Sauvage ◽  
Thi Phuong Quynh Le ◽  
Sylvain Ouillon ◽  
Didier Orange ◽  
...  

The Red River basin is a typical Asian river system affected by climate and anthropogenic changes. The purpose of this study is to build a tool to separate the effect of climate variability and anthropogenic influences on hydrology and suspended sediments. A modeling method combining in situ and climatic satellite data was used to analyze the discharge (Q) and suspended sediment concentration (SSC) at a daily time scale from 2000 to 2014. Scenarios of natural and actual conditions were implemented to quantify the impacts of climate variability and dams. The modeling gained satisfactory simulation results of water regime and SSC compared to the observations. Under natural conditions, the Q and SSC show decreasing tendencies, and climate variability is the main influence factor reducing the Q. Under actual conditions, SSC is mainly reduced by dams. At the outlet, annual mean Q got reduced by 13% (9% by climate and 4% by dams), and annual mean SSC got reduced to 89% (13% due to climate and 76% due to dams) of that under natural conditions. The climate tendencies are mainly explained by a decrease of 9% on precipitation and 5% on evapotranspiration, which results in a 13% decrease of available water for the whole basin.


2008 ◽  
Vol 49 (3) ◽  
pp. 4-5
Author(s):  
Siobhán M Mattison

1978 ◽  
Author(s):  
Marion S. Hines ◽  
John J. Yanchosek

Sign in / Sign up

Export Citation Format

Share Document