coastal basins
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 23)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 10 (11) ◽  
pp. 759
Author(s):  
Antonio Gallegos Reina ◽  
María Jesús Perles Roselló

This paper analyzes the relationships between the peri-urbanization process in the surroundings of cities and the increase in the synergistic dangers of flooding and water erosion. An analysis and an evaluation of the conditions causing the flooding in peri-urban basins are carried out, comparing the conditions before and after the peri-urbanization process. For this purpose, a diachronic analysis of the morphological and functional conditions of the territory that conditions flooding and associated dangers is provided. The conditions for the generation of runoff, the incorporation of solids into the flood flow, and the characteristics of urban planning are evaluated in 1956 (date before the peri-urbanization process) and 2010 (the peak of the urbanization process in the area) in order to analyze the changes in the land use model and their consequences on the increase in risk. The study is applied to four river basins (44 km2 in total) with varied land use models, in order to collect representative scenarios of the peri-urban coastal basins of the Spanish Mediterranean region. The results show that the risk factors that undergo the most significant changes are the runoff threshold, the vegetation cover, and the soil structure. It is concluded that peri-urbanization constitutes a territorial risk-causing process, and attention is drawn to the convenience of going beyond the sectoral approach in the study of hazards, coming to understand them as a multi-hazard process in which causes have a direct relationship with the underlying territorial model.


2021 ◽  
Vol 80 (15) ◽  
Author(s):  
Lukman A. Soboyejo ◽  
Beatrice M. S. Giambastiani ◽  
Mario Molducci ◽  
Marco Antonellini

AbstractThe low-lying coastal basins of Ravenna (Italy) are at or below mean sea level and currently undergoing land subsidence, which exposes the basins to frequent inundation and groundwater and soil salinization. The surface water drainage becomes necessary to lower the water table head and further prevent flooding and waterlogging. The study examines the evolution of drainage apropos to climate change and land subsidence in the three main Ravenna coastal basins. Our findings show that the evolution of drainage is influenced by land subsidence, climate change variability, droughts, vertical seepage, and local water management. Land subsidence causes an increase in upward-directed vertical seepage of saline water through the shallow unconfined aquifer into the drainage channels of the coastal basins, thus leading to an increase in drainage through time. At a seasonal timescale, the rate of pumping depends on antecedent rainfall and soil–water storage. The warming extremes indices, specifically drought indices, show to be more significant than rainfall indices trends to monitor drainage evolution. Drought indices permit easy comparison of dryness or wetness severity with drainage evolution along their time scale. The co-occurring anthropogenic and natural factors involving in the increasing drainage rate will affect decadal and seasonal water management policies in the area. The implications of increasing drainage rates, long periods of drought with limited rainfall, and increasing temperature will further worsen freshwater availability in this coastal area already experiencing soil and water salinization. However, drainage of this low-lying territory has effectively mitigated rising water tables and avoided flooding. Our study has shown that each coastal basin behaves differently in terms of sensitivity to land subsidence and climate extremes. Therefore, when using drainage data time series for water management purposes, one should account for past management practices and for the specific sensitivity of each basin to external factors.


Author(s):  
V. A. Kotinas

The present study aims to investigate the hydrological response of small coastal watersheds to storm events. Areas around the Mediterranean Sea are usually characterized by streams with intermittent flows and flash floods are common. Firstly, we analyze the geomorphological, soil and land cover characteristics of the watershed in order to estimate their effect on surface runoff. Furthermore, the rainfall characteristics of an extreme event that caused flash flooding in the past are analyzed. By combining these factors, we are able to predict the response of this basin to severe storm events. The study area is located in the island of Samos, in Eastern Greece, where flash flood events are usual and pose a risk to areas located around rivers. In this area runoff is intermittent, occurring mainly during storm events and there is a lack of discharge or other instrumental measurements. By applying the SCS-CN method we estimate the response of two of the largest watersheds in Samos Island, through the construction of a Synthetic Unit Hydrograph (SUH). Firstly, we examined the record of historic floods in the area, selecting a large flash flood event (November 2001) and then obtained the daily rainfall data, which are used by the SCS method for the calculations. We applied the SCS methodology in order to estimate various parameters (e.g. lag time, time of concentration, maximum discharge), which also required the calculation of the Curve Number (CN) for each watershed. During this event (136 mm rainfall), we calculated a direct runoff (excess rainfall) of 44%-48% for these watersheds. This methodology can be particularly useful in simulating the hydrological response of small Mediterranean watersheds and to introduce better strategies for the management of the whole drainage basin.


Author(s):  
V. A. Kotinas

The present study aims to model flash flood risk in small coastal watersheds in areas that are characterized by Mediterranean climate through extensive morphometric analysis which can prove invaluable for the investigation of flood risk, in ungauged watersheds, where flash floods are frequent. The available topographic data (EU-DEM) are analyzed through Geographic Information Systems (GIS) to produce all the secondary variables that are necessary for this morphometric analysis. Watershed prioritization techniques that are applied on geomorphological variables have proven to be an effective way of estimating the relative flash flood risk in a sub-watershed level. A series of morphometric parameters are used (bifurcation ratio, drainage frequency, drainage density, drainage texture, length of overland flow, circularity ratio, form factor, elongation ratio) which have an effect on flood risk. In small watersheds, with intermittent runoff, this effect can be different than in larger watersheds, so our methodology differs significantly from the methodology other researchers use. The compound factor is calculated by aggregating the assigned ranks of these morphometric indices and the sub-watersheds are prioritized according to their flash flood risk. The study area is located in the island of Samos, in Eastern Greece, where flood events are usual and pose a risk to villages and infrastructure around the island. The selected watershed (Imvrasos river) is divided into several sub-watersheds (W-1 to W-8) and a series of morphometric indices are calculated and evaluated through statistical procedures and by applying prioritization techniques, in order to locate the sub-basins that have the highest risk to flash floods. Sub-watersheds W-2 and W-3 (on the southern part of Imvrasos area) show the highest prioritization values, and should be prioritized for better watershed management planning.


2021 ◽  
Vol 3 ◽  
Author(s):  
Matthew V. Bilskie ◽  
Haihong Zhao ◽  
Don Resio ◽  
John Atkinson ◽  
Zachary Cobell ◽  
...  

Traditional coastal flood hazard studies do not typically account for rainfall-runoff processes in quantifying flood hazard and related cascading risks. This study addresses the potential impacts of antecedent rainfall-runoff, tropical cyclone (TC)-driven rainfall, and TC-driven surge on total water levels and its influence in delineating a coastal flood transition zone for two distinct coastal basins in southeastern Louisiana (Barataria and Lake Maurepas watersheds). Rainfall-runoff from antecedent and TC-driven rainfall along with storm surge was simulated using a new rain-on-mesh module incorporated into the ADCIRC code. Antecedent rainfall conditions were obtained for 21 landfalling TC events spanning 1948–2008 via rain stations. A parametric, TC-driven, rainfall model was used for precipitation associated with the TC. Twelve synthetic storms of varying meteorological intensity (low, medium, and high) and total rainfall were utilized for each watershed and provided model forcing for coastal inundation simulations. First, it was found that antecedent rainfall (pre-TC landfall) is influential up to 3 days pre-landfall. Second, results show that antecedent and TC-driven rainfall increase simulated peak water levels within each basin, with antecedent rainfall dominating inundation across the basin's upper portions. Third, the delineated flood zones of coastal, transition, and hydrologic show stark differences between the two basins.


Author(s):  
Marcus Vinicius Dantas de Assunção ◽  
Mariana Almeida ◽  
Prof. Dra. Marcela Marques Vieira

One of the main environmental concerns associated with the exploration and production of oil fields is related to the generation of produced water, this is a strategic challenge for companies since is resposible for the largest share of waste genretared by the oil industry. This theme is presented as multidisciplinary since it is a study with dynamic models in an environmental area linked to the oil industry. Thus, the present work aims to evaluate the performance of dynamic environmental sustainability, from the generation of produced water from onshore oil fields located at the coastal basins of Brazil with higher oil production. The data were made available by the ANP (National Petroleum Agency) from its website, totalizing 67 fields during the years 2014, 2015 and 2016. In addition, dynamic Data Envelopment Analysis was used to determine dynamic efficiency. The results showed a positive effect of the variables directional wells, vertical wells and age, the first two variable showed a fundamental role in determining environmental efficiencies. Therefore, the results allowed to state that there is a poor management of the technological resources in onshore fields of the Brazilian coastal basins, generating excessive amounts of produced water.


Sign in / Sign up

Export Citation Format

Share Document