scholarly journals Estimation of hydrological drought recovery based on precipitation and Gravity Recovery and Climate Experiment (GRACE) water storage deficit

2021 ◽  
Vol 25 (2) ◽  
pp. 511-526
Author(s):  
Alka Singh ◽  
John Thomas Reager ◽  
Ali Behrangi

Abstract. Drought is a natural extreme climate phenomenon that presents great challenges in forecasting and monitoring for water management purposes. Previous studies have examined the use of Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage anomalies to measure the amount of water missing from a drought-affected region, and other studies have attempted statistical approaches to drought recovery forecasting based on joint probabilities of precipitation and soil moisture. The goal of this study is to combine GRACE data and historical precipitation observations to quantify the amount of precipitation required to achieve normal storage conditions in order to estimate a likely drought recovery time. First, linear relationships between terrestrial water storage anomaly (TWSA) and cumulative precipitation anomaly are established across a range of conditions. Then, historical precipitation data are statistically modeled to develop simplistic precipitation forecast skill based on climatology and long-term trend. Two additional precipitation scenarios are simulated to predict the recovery period by using a standard deviation in climatology and long-term trend. Precipitation scenarios are convolved with water deficit estimates (from GRACE) to calculate the best estimate of a drought recovery period. The results show that, in the regions of strong seasonal amplitude (like a monsoon belt), drought continues even with above-normal precipitation until its wet season. The historical GRACE-observed drought recovery period is used to validate the approach. Estimated drought for an example month demonstrated an 80 % recovery period, as observed by the GRACE.

2019 ◽  
Author(s):  
Alka Singh ◽  
John T. Reager ◽  
Ali Behrangi

Abstract. Drought is a natural climate extreme phenomenon that presents great challenges in forecasting and monitoring for water management purposes. Previous studies have examined the use of Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage anomalies to measure the amount of water missing from a drought-affected region, and other studies have attempted statistical approaches to drought recovery forecasting based on joint probabilities of precipitation and soil moisture. The goal of this study is to combine GRACE data with historical precipitation observations to quantify the amount of precipitation required to achieve normal storage conditions in order to estimate a likely drought recovery time. First, linear relationships between terrestrial water storage anomaly (TWSA) and cumulative precipitation anomaly are established across a range of conditions. Then, historical precipitation data are statistically modeled to develop simplistic precipitation forecast skill. Three different precipitation scenarios are simulated by using a standard deviation in climatology. Precipitation scenarios are convolved with precipitation deficit estimates to calculate best-estimate of a drought recovery period. The results show that in the regions of strong seasonal amplitude (like monsoon belt) drought continues even with the above-normal precipitation until its wet season. Historical GRACE-observed drought recovery period is used to validate the approach. Estimated drought for an example month demonstrated 80% similar recovery period as observed by the GRACE.


2020 ◽  
Author(s):  
Peyman Saemian ◽  
Mohammad Javad Tourian ◽  
Nico Sneeuw

<p>Climate change and the growing demand for freshwater have raised the frequency and intensity of extreme events like drought. Satellite observations have improved our understanding of the temporal and spatial variability of droughts. Since March 2002, the Gravity Recovery and Climate Experiment (GRACE) and its successor GRACE Follow-On (GRACE-FO) have been observing variations in Earth's gravity field yielding valuable information about changes in terrestrial water storage anomaly (TWSA). The terrestrial water storage vertically integrates all forms of water on and beneath land surface including snow, surface water, soil moisture, and groundwater storage.</p><p>Drought indices help to monitor drought by characterizing it in terms of their severity, location, duration and timing. Several drought indices have been developed based on GRACE water storage anomaly from a GRACE-based climatology, most of which suffer from the short record of GRACE, about 15 years, for their climatology. The limited duration of the GRACE observations necessitates the use of external datasets of TWSA with a more extended period for climatology. Drought characterization comes with its own uncertainties due to the inherent uncertainty in the GRACE data, the various post-processing approaches of GRACE data, and different options for external datasets on the other hand.</p><p>This study offers a method to quantify uncertainties for the storage-based drought index. Moreover, we assess the sensitivity of major global river basins to the duration of the observations. The outcome of the study is invaluable in the sense that it allows for a more informative storage based drought, including uncertainty, thus enabling a more realistic risk assessment.</p>


Hydrology ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 75 ◽  
Author(s):  
Ahmad Nemati ◽  
Seyed Hossein Ghoreishi Najafabadi ◽  
Gholamreza Joodaki ◽  
S. Saeid Mousavi Nadoushani

Drought monitoring needs comprehensive and integrated meteorological and hydrologic data. However, such data are generally not available in extensive catchments. The present study aimed to analyze drought in the central plateau catchment of Iran using the terrestrial water storage deficit index (TSDI). In this arid catchment, the meteorological and hydrologic observed data are scarce. First, the time series of terrestrial water storage changes (TWSC) obtained from the gravity recovery and climate experiment (GRACE) was calculated and validated by the water budget output. Then, the studied area was divided into semi-arid, arid, and hyper-arid zones and the common drought indices of SPI and RDIe within a timescale of 3, 6, and 12 months were calculated to compare the results obtained from the TSDI by using the meteorological data of 105 synoptic stations. Based on the results, the study area experienced a drought with extreme severity and expansion during 2007–2008. The drought spatial distribution map obtained from three indices indicated good conformity. Based on the maps, the severity, duration, and frequency of drought in the semi-arid zone were greater than that in other zones, while no significant drought occurred in the hyper-arid zone. Furthermore, the temporal distribution of drought in all three zones indicated that the TSDI could detect all short- and long-term droughts. The study results showed that the TSDI is a reliable, integrated, and comprehensive index. Using this index in arid areas with little field data led to some valuable results for planning and water resource management.


2017 ◽  
Vol 18 (2) ◽  
pp. 381-396 ◽  
Author(s):  
Debanjan Sinha ◽  
Tajdarul H. Syed ◽  
James S. Famiglietti ◽  
John T. Reager ◽  
Reis C. Thomas

Abstract Frequent recurrences of drought in India have had major societal, economical, and environmental impacts. While region-specific assessments are abundant, exhaustive appraisal over large spatial scales has been insubstantial. Here a new drought index called Water Storage Deficit Index (WSDI) is devised and analyzed for holistic representation of drought. The crux of the method is the employment of terrestrial water storage (TWS) variations from Gravity Recovery and Climate Experiment (GRACE) for quantification of drought intensity and severity. Drought events in recent times are well identified and quantified using the approach over four homogenous rainfall regions of India over the period from April 2002 to April 2015. Among the four regions, the highest peak deficit of −158.00 mm is observed in January 2015 over central India. While the drought of 2002–04 is prominent in peninsular and west-central India, the drought of 2009–10 and 2012–13 is conspicuous in almost all four regions of India. The longest deficit period of 23 months (from February 2009 to December 2010) and the highest severity value of −26.31 are observed in central and northwestern India, respectively. WSDI values show an increasing trend in west-central India (0.07 yr−1), indicating recovery from previously existing drought conditions. On the contrary, a decreasing trend in WSDI is observed in northwestern (−0.07 yr−1) and central (−0.18 yr−1) India. Results demonstrate considerable confidence in the potential of WSDI for robust characterization of drought over large spatial scales.


2021 ◽  
Vol 13 (6) ◽  
pp. 1223
Author(s):  
Manuela Girotto ◽  
Rolf Reichle ◽  
Matthew Rodell ◽  
Viviana Maggioni

The Gravity Recovery and Climate Experiment (GRACE) mission and its Follow-On (GRACE-FO) mission provide unprecedented observations of terrestrial water storage (TWS) dynamics at basin to continental scales. Established GRACE data assimilation techniques directly adjust the simulated water storage components to improve the estimation of groundwater, streamflow, and snow water equivalent. Such techniques artificially add/subtract water to/from prognostic variables, thus upsetting the simulated water balance. To overcome this limitation, we propose and test an alternative assimilation scheme in which precipitation fluxes are adjusted to achieve the desired changes in simulated TWS. Using a synthetic data assimilation experiment, we show that the scheme improves performance skill in precipitation estimates in general, but that it is more robust for snowfall than for rainfall, and it fails in certain regions with strong horizontal gradients in precipitation. The results demonstrate that assimilation of TWS observations can help correct (adjust) the model’s precipitation forcing and, in turn, enhance model estimates of TWS, snow mass, soil moisture, runoff, and evaporation. A key limitation of the approach is the assumption that all errors in TWS originate from errors in precipitation. Nevertheless, the proposed approach produces more consistent improvements in simulated runoff than the established GRACE data assimilation techniques.


2010 ◽  
Vol 11 (1) ◽  
pp. 156-170 ◽  
Author(s):  
Qiuhong Tang ◽  
Huilin Gao ◽  
Pat Yeh ◽  
Taikan Oki ◽  
Fengge Su ◽  
...  

Abstract Terrestrial water storage (TWS) is a fundamental component of the water cycle. On a regional scale, measurements of terrestrial water storage change (TWSC) are extremely scarce at any time scale. This study investigates the feasibility of estimating monthly-to-seasonal variations of regional TWSC from modeling and a combination of satellite and in situ surface observations based on water balance computations that use ground-based precipitation observations in both cases. The study area is the Klamath and Sacramento River drainage basins in the western United States (total area of about 110 000 km2). The TWSC from the satellite/surface observation–based estimates is compared with model results and land water storage from the Gravity Recovery and Climate Experiment (GRACE) data. The results show that long-term evapotranspiration estimates and runoff measurements generally balance with observed precipitation, suggesting that the evapotranspiration estimates have relatively small bias for long averaging times. Observations show that storage change in water management reservoirs is about 12% of the seasonal amplitude of the TWSC cycle, but it can be up to 30% at the subbasin scale. Comparing with predevelopment conditions, the satellite/surface observation–based estimates show larger evapotranspiration and smaller runoff than do modeling estimates, suggesting extensive anthropogenic alteration of TWSC in the study area. Comparison of satellite/surface observation–based and GRACE TWSC shows that the seasonal cycle of terrestrial water storage is substantially underestimated by GRACE.


Sign in / Sign up

Export Citation Format

Share Document