scholarly journals An Assessment of the potential impact of the Gothenburg Protocol on surface water chemistry using the dynamic MAGIC model at acid sensitive sites in the UK

2001 ◽  
Vol 5 (3) ◽  
pp. 529-542 ◽  
Author(s):  
A. Jenkins ◽  
J. M. Cullen

Abstract. The MAGIC model has been systematically calibrated to 12 sites in the UK, which form part of the UK Acid Waters Monitoring Network, using best available data. The model successfully simulates observed changes in major ions and acid neutralising capacity over the period 1988 to 2000. Predictions for the future are made assuming no further emission reductions from present day (constant deposition at current level) compared to reduced sulphur and nitrogen emission agreed under the Gothenburg Protocol (reduced sulphur dioxide emission by c.80%, nitrogen oxides by c.45% and ammonia by 20% by 2010). In addition, uncertainty in our understanding of future nitrogen dynamics is assessed using "best" and "worst" cases of nitrogen leaching in the model. The results clearly indicate the need to achieve further emission reductions in sulphur and nitrogen beyond present day levels to prevent continued surface water acidification. The predictions further indicate that if the emission reductions agreed under the Gothenburg Protocol are achieved by 2010 this will promote a recovery in acid neutralising capacity by 2020 at all sites. Differences between "best" and "worst" case nitrate leaching are relatively small, emphasising the need to achieve the sulphur reductions in the shorter term. In the longer term, beyond 2020, increased nitrogen leaching under the "worst case" leading to further acidification is likely indicating a need for further reduction of nitrogen emissions. Keywords: acidification, recovery, model, Gothenburg Protocol, nitrogen

2003 ◽  
Vol 7 (4) ◽  
pp. 456-466 ◽  
Author(s):  
R. C. Helliwell ◽  
A. Jenkins ◽  
R. C. Ferrier ◽  
B. J. Cosby

Abstract. Abstract: The MAGIC (Model of Acidification of Groundwaters in Catchments) model has been calibrated to three acid sensitive regions in the UK: Galloway, the South Pennines and Wales. These calibrations use the best available data for surface water, soil and deposition, from several UK data bases and regional sampling programmes. The model is capable of reproducing observed base cation and acid anion concentrations as reflected by a close match between observed and simulated acid neutralising capacity (ANC). Predictions to 2016 under currently agreed emission reductions, the Gothenburg Protocol, show that ANC greater than zero will be achieved at 100%, 86% and 100% of sites in Galloway, the Pennines and Wales, respectively. This indicates the potential for biological recovery and a return to ‘good status’ although chemical conditions remain some way from simulated pre-acidification conditions. In the longer term, beyond 2036 (20 years after compliance with the Gothenburg protocol), the model indicates that increased N leakage to surface waters may cause deterioration in the chemical status. Keywords: recovery, acidification, modelling, upland UK, ecology


2001 ◽  
Vol 5 (3) ◽  
pp. 519-528 ◽  
Author(s):  
A. Jenkins ◽  
R. C. Ferrier ◽  
R. C. Helliwell

Abstract. Controls on nitrate leaching from upland moorland catchments are not yet fully understood and yet, despite agreements on emission reductions, increased surface water nitrate concentrations may affect significantly the acidity status of these waters in the future. At Lochnagar, an upland moorland catchment in N.E. Scotland, 12 years of surface water chemistry observations have identified a steady increase in nitrate concentration despite no measured change in inorganic nitrogen deposition. The MAGIC model has been applied to simulate a "best case" situation assuming nitrate in surface water represents "hydrological" contributions (direct run-off) and a ‘worst case’ assuming a nitrogen saturation mechanism in the catchment soil. Only the ‘saturation’ model is capable of matching the 12 years of observation for nitrate but both model structures match the pH and acid neutralising capacity record. Future predictions to 2040, in response to the agreed emission reductions under the Gothenburg Protocol, are markedly different. The worst case predicts continued surface water acidification whilst the best case predicts a steady recovery. Keywords: nitrogen saturation, modelling, Lochnagar, Gothenburg Protocol


1998 ◽  
Vol 2 (4) ◽  
pp. 543-554 ◽  
Author(s):  
C. D. Evans ◽  
A. Jenkins ◽  
R. C. Helliwell ◽  
R. Ferrier

Abstract. A dynamic, process-based model of surface water acidification, MAGIC, has been applied to over a thousand sites across the UK. The model is calibrated to surface water samples collected during a survey for the Critical Loads programme, and utilises the best available and consistent estimates of soil physical and chemical properties, rainfall and runoff volumes, and deposition chemistry. A total of 698 sites were calibrated successfully. At these sites, surface water chemistry was reconstructed from 1850 to the present day, and forecast to 2050 based on future decreases in sulphur (S) deposition in response to the Second S Protocol. Model outputs capture distinct regional patterns of acidification and recovery. the most acidic present-day conditions are found in acid-sensitive regions of Northern England (the Pennines, Lake District and North York Moors). Although a significant proportion of sites in these areas failed to calibrate, those that did are predicted to have experienced severe historic decreases in acidic neutralising capacity (ANC) in response to high levels of acidic deposition. The model also indicates significant acidification in the moderate deposition areas of Wales and Galloway, whereas in the low deposition region of northern Scotland, acidification has been minor even in areas of acid-sensitive geology. ANC is forecast to recover at virtually all sites, with the greatest recovery predicted for areas currently subject to high deposition. The model indicates that the Second S Protocol, however, will not be sufficient to produce full recovery, with average ANC increases to 2050 counteracting just 27% of the simulated decline from 1850 to present day. Acidic conditions (ANC < 0) are predicted to persist until 2050 at a significant number of sites in Northern England, Wales and Galloway.


2020 ◽  
Vol 32 (1) ◽  
Author(s):  
Mechthild Anthe ◽  
Beatrice Valles-Ebeling ◽  
Jan Achtenhagen ◽  
Martina Arenz-Leufen ◽  
Jackie Atkinson ◽  
...  

Abstract Background Imidacloprid is an active ingredient included in plant protection, biocidal and veterinary medicinal products (VMPs). VMPs containing Imidacloprid are formulated as spot-on products or collars and designed to protect pets, predominantly dogs and cats, from parasite infestation. Monitoring data collected under the Water Framework Directive between 2016 and 2018 showed detectable and varying levels of Imidacloprid in the UK surface water bodies. The aim of the work was to investigate the potential contribution of VMPs by developing a model for predicting the emissions from sewage treatment plants from the use of dog and cat spot-on and collar VMPs. Due to the absence of appropriate exposure models for VMPs, the model was built based on the principles of environmental exposure assessment for biocidal products. Results Three emission paths were considered to be the most likely routes for repeated emissions to waterways from the use of spot-on and collar VMPs, i.e., transfer to pet bedding followed by washing, washing/bathing of dogs, and walking dogs in the rain. The developed model was used to calculate the Imidacloprid concentrations in surface water after discharge from wastewater treatment plants. Realistic worst-case input parameters were deduced from sales and survey data and experimental studies. Modelled total concentrations in surface water for each pathway ranged from 0.84 to 4.8 ng/L. The calculated concentrations did not exceed the ecological thresholds for the most sensitive aquatic invertebrate organisms and were found to be much lower than the UK monitoring data for river water. For example, the calculated concentration from the bathing/washing of dogs was < 3% of the highest levels of Imidacloprid measured in surface waters. Conclusion In conclusion, a model has been successfully built and applied. The modelled data indicate that these VMPs make only a very small contribution to the levels of Imidacloprid observed in the UK water monitoring programme. Further, calculated concentrations do not exceed ecotoxicological threshold values indicating acceptable chronic safety to aquatic organisms.


2003 ◽  
Vol 7 (4) ◽  
pp. 540-551 ◽  
Author(s):  
M. Rogora ◽  
A. Marchetto ◽  
R. Mosello

Abstract. The dynamic model MAGIC was calibrated and applied to selected sites in north-western Italy (3 rivers, 10 alpine lakes) to predict the future response of surface water to different scenarios of atmospheric deposition of S and N compounds. Results at the study sites suggest that several factors other than atmospheric deposition may influence the long-term changes in surface water chemistry. At present the lumped approach of dynamic models such as MAGIC cannot represent all the processes occurring at the catchment scale. Climate warming in particular and its effects on surface water chemistry proved to be important in the study area. Furthermore the river catchments considered here showed clear signs of N saturation. This condition and the increasing concentrations of NO3 in river water were simulated using N dynamics recently included in MAGIC. The modelling performed in this study represents the first application of MAGIC to Italian sites. The results show that inclusion of other factors specific to the Mediterranean area, such as dust deposition and climate change, may improve the fit to observed data and the reliability of the model forecast. Despite these limitations, the model captured well the main trends in chemical data in both rivers and lakes. The outputs clearly demonstrate the benefits of achieving the emission reductions in both S and N compounds as agreed under the Gothenburg Protocol rather than making no further emission reductions. It was also clear that, besides the substantial reduction of SO4 deposition from the peak levels of the 1980s, N deposition must also be reduced in the near future to protect freshwaters from further acidification. Keywords: MAGIC, northern Italy, acidification, recovery, nitrogen saturation


1988 ◽  
Vol 19 (2) ◽  
pp. 99-120 ◽  
Author(s):  
A. Lepistö ◽  
P. G. Whitehead ◽  
C. Neal ◽  
B. J. Cosby

A modelling study has been undertaken to investigate long-term changes in surface water quality in two contrasting forested catchments; Yli-Knuutila, with high concentrations of base cations and sulphate, in southern Finland; and organically rich, acid Liuhapuro in eastern Finland. The MAGIC model is based on the assumption that certain chemical processes (anion retention, cation exchange, primary mineral weathering, aluminium dissolution and CO2 solubility) in catchment soils are likely keys to the responses of surface water quality to acidic deposition. The model was applied for the first time to an organically rich catchment with high quantities of humic substances. The historical reconstruction of water quality at Yli-Knuutila indicates that the catchment surface waters have lost about 90 μeq l−1 of alkalinity in 140 years, which is about 60% of their preacidification alkalinity. The model reproduces the declining pH levels of recent decades as indicated by paleoecological analysis. Stream acidity trends are investigated assuming two scenarios for future deposition. Assuming deposition rates are maintained in the future at 1984 levels, the model indicates that stream pH is likely to continue to decline below presently measured levels. A 50% reduction in deposition rates would likely result in an increase in pH and alkalinity of the stream, although not to estimated preacidification levels. Because of the high load of organic acids to the Liuhapuro stream it has been acid before atmospheric pollution; a decline of 0.2 pH-units was estimated with increasing leaching of base cations from the soil despite the partial pH buffering of the system by organic compounds.


Sign in / Sign up

Export Citation Format

Share Document