scholarly journals Acting, predicting and intervening in a socio-hydrological world

2013 ◽  
Vol 10 (8) ◽  
pp. 10659-10717 ◽  
Author(s):  
S. N. Lane

Abstract. This paper asks a simple question: if humans and their actions co-evolve with hydrological systems (Sivapalan and Blöschl, 2012), what is the role of those humans who are simultaneously hydrological scientists, bound up within this system? To put it more directly, can we, as socio-hydrologists study the socio-hydrological world in isolation from that world in a way that mirrors the supposed separation between scientists and society? I answer this question, in the negative, from three linked perspectives. The first draws directly upon science-technology studies to make a case to the (socio-hydrological) community that we need to be sensitive to constructivist accounts of science in general and hydrology in particular. I review three positions taken by such accounts and apply them to hydrological science, supported with specific examples: (a) the philosophical critique of the claimed abstraction of scientists and scientific activity from the socio-hydrological world; (b) the way in which hydrological science is embedded in wider societal decision-making; and (c) the recognition that socio-hydrological knowledge is much more distributed than we as (socio-)hydrologists commonly recognise. For the second perspective, I consider predictive modelling as a socio-hydrological practice. I draw upon wider studies of the practice of modelling, coupled to empirical evidence for one element of hydrological modelling, roughness parameterisation, to consider how it is that socio-hydrological modellers come to believe in the predictive models that they use. This will show that if predictive modelling is to be more than analytical, that if it is to effect more sustainable socio-hydrological futures, then we need to rethink the basic tenets of how we practice predictive modelling. These first two perspectives are themselves, in combination, analytical, prone to the criticism that they cause us to degenerate into an "anything goes" relationship with the world around us. Thus, in a third perspective I explicitly challenge this degeneration by setting out a number of practices that might be valuable for doing prediction within a socio-hydrological system. These include: (1) working with conflict and controversy in hydrological science, rather than trying to eliminate them; (2) using hydrological events to avoid becoming paradigm-bound; (3) being empirical and experimental but in a socio-hydrological sense; and (4) co-producing socio-hydrological predictions. I will show how this might be done through a project that specifically developed predictive models for making interventions in river catchments to increase high river flow attenuation, in which I found myself becoming detached from my normal disciplinary networks and attached to the co-production of a predictive hydrological model with communities normally excluded from the practice of hydrological science.

2014 ◽  
Vol 18 (3) ◽  
pp. 927-952 ◽  
Author(s):  
S. N. Lane

Abstract. This paper asks a simple question: if humans and their actions co-evolve with hydrological systems (Sivapalan et al., 2012), what is the role of hydrological scientists, who are also humans, within this system? To put it more directly, as traditionally there is a supposed separation of scientists and society, can we maintain this separation as socio-hydrologists studying a socio-hydrological world? This paper argues that we cannot, using four linked sections. The first section draws directly upon the concern of science-technology studies to make a case to the (socio-hydrological) community that we need to be sensitive to constructivist accounts of science in general and socio-hydrology in particular. I review three positions taken by such accounts and apply them to hydrological science, supported with specific examples: (a) the ways in which scientific activities frame socio-hydrological research, such that at least some of the knowledge that we obtain is constructed by precisely what we do; (b) the need to attend to how socio-hydrological knowledge is used in decision-making, as evidence suggests that hydrological knowledge does not flow simply from science into policy; and (c) the observation that those who do not normally label themselves as socio-hydrologists may actually have a profound knowledge of socio-hydrology. The second section provides an empirical basis for considering these three issues by detailing the history of the practice of roughness parameterisation, using parameters like Manning's n, in hydrological and hydraulic models for flood inundation mapping. This history sustains the third section that is a more general consideration of one type of socio-hydrological practice: predictive modelling. I show that as part of a socio-hydrological analysis, hydrological prediction needs to be thought through much more carefully: not only because hydrological prediction exists to help inform decisions that are made about water management; but also because those predictions contain assumptions, the predictions are only correct in so far as those assumptions hold, and for those assumptions to hold, the socio-hydrological system (i.e. the world) has to be shaped so as to include them. Here, I add to the "normal" view that ideally our models should represent the world around us, to argue that for our models (and hence our predictions) to be valid, we have to make the world look like our models. Decisions over how the world is modelled may transform the world as much as they represent the world. Thus, socio-hydrological modelling has to become a socially accountable process such that the world is transformed, through the implications of modelling, in a fair and just manner. This leads into the final section of the paper where I consider how socio-hydrological research may be made more socially accountable, in a way that is both sensitive to the constructivist critique (Sect. 1), but which retains the contribution that hydrologists might make to socio-hydrological studies. This includes (1) working with conflict and controversy in hydrological science, rather than trying to eliminate them; (2) using hydrological events to avoid becoming locked into our own frames of explanation and prediction; (3) being empirical and experimental but in a socio-hydrological sense; and (4) co-producing socio-hydrological predictions. I will show how this might be done through a project that specifically developed predictive models for making interventions in river catchments to increase high river flow attenuation. Therein, I found myself becoming detached from my normal disciplinary networks and attached to the co-production of a predictive hydrological model with communities normally excluded from the practice of hydrological science.


2020 ◽  
Vol 29 (01) ◽  
pp. 226-230
Author(s):  
David L. Buckeridge

Objectives: This scoping review synthesizes the recent literature on precision public health and the influence of predictive models on health equity with the intent to highlight central concepts for each topic and identify research opportunities for the biomedical informatics community. Methods: Searches were conducted using PubMed for publications between 2017-01-01 and 2019-12-31. Results: Precision public health is defined as the use of data and evidence to tailor interventions to the characteristics of a single population. It differs from precision medicine in terms of its focus on populations and the limited role of human genomics. High-resolution spatial analysis in a global health context and application of genomics to infectious organisms are areas of progress. Opportunities for informatics research include (i) the development of frameworks for measuring non-clinical concepts, such as social position, (ii) the development of methods for learning from similar populations, and (iii) the evaluation of precision public health implementations. Just as the effects of interventions can differ across populations, predictive models can perform systematically differently across subpopulations due to information bias, sampling bias, random error, and the choice of the output. Algorithm developers, professional societies, and governments can take steps to prevent and mitigate these biases. However, even if the steps to avoid bias are clear in theory, they can be very challenging to accomplish in practice. Conclusions: Both precision public health and predictive modelling require careful consideration in how subpopulations are defined and access to data on subpopulations can be challenging. While the theory for both topics has advanced considerably, there is much work to be done in understanding how to implement and evaluate these approaches in practice.


Author(s):  
Eduardo Manzano Moreno

This chapter addresses a very simple question: is it possible to frame coinage in the Early Middle Ages? The answer will be certainly yes, but will also acknowledge that we lack considerable amounts of relevant data potentially available through state-of-the-art methodologies. One problem is, though, that many times we do not really know the relevant questions we can pose on coins; another is that we still have not figured out the social role of coinage in the aftermath of the Roman Empire. This chapter shows a number of things that could only be known thanks to the analysis of coins. And as its title suggests it will also include some reflections on greed and generosity.


2020 ◽  
Vol 1 (1) ◽  
pp. 102-122
Author(s):  
Nicolas Mariot

This article discusses the shared idea that dehumanization plays a fundamental role in mass killings, helping executioners in no longer perceiving as fellow human beings those they had to kill. Using perpetrators’ letters and judicial interrogations from German people involved in the War in the East between 1941 and 1944, the article questions what some of the killers say about their victims’ attitudes and actions, and their observations of them. It examines the recognition of attitudes of humanity by some of the executioners themselves and asks a simple question: What are we to do with these traces? The answer is that these last exchanges between some executioners and their victims deserve our attention because they compel us to argue that the executioners killed in spite of having sometimes recognized the humanity of their victims. Such an argument (killing nonetheless) has strong implications for interpretations of extreme violence.


2010 ◽  
Vol 4 (1) ◽  
pp. 115-128 ◽  
Author(s):  
R. J. Thayyen ◽  
J. T. Gergan

Abstract. A large number of Himalayan glacier catchments are under the influence of humid climate with snowfall in winter (November–April) and south-west monsoon in summer (June–September) dominating the regional hydrology. Such catchments are defined as "Himalayan catchment", where the glacier meltwater contributes to the river flow during the period of annual high flows produced by the monsoon. The winter snow dominated Alpine catchments of the Kashmir and Karakoram region and cold-arid regions of the Ladakh mountain range are the other major glacio-hydrological regimes identified in the region. Factors influencing the river flow variations in a "Himalayan catchment" were studied in a micro-scale glacier catchment in the Garhwal Himalaya, covering an area of 77.8 km2. Three hydrometric stations were established at different altitudes along the Din Gad stream and discharge was monitored during the summer ablation period from 1998 to 2004, with an exception in 2002. These data have been analysed along with winter/summer precipitation, temperature and mass balance data of the Dokriani glacier to study the role of glacier and precipitation in determining runoff variations along the stream continuum from the glacier snout to 2360 m a.s.l. The study shows that the inter-annual runoff variation in a "Himalayan catchment" is linked with precipitation rather than mass balance changes of the glacier. This study also indicates that the warming induced an initial increase of glacier runoff and subsequent decline as suggested by the IPCC (2007) is restricted to the glacier degradation-derived component in a precipitation dominant Himalayan catchment and cannot be translated as river flow response. The preliminary assessment suggests that the "Himalayan catchment" could experience higher river flows and positive glacier mass balance regime together in association with strong monsoon. The important role of glaciers in this precipitation dominant system is to augment stream runoff during the years of low summer discharge. This paper intends to highlight the importance of creating credible knowledge on the Himalayan cryospheric processes to develop a more representative global view on river flow response to cryospheric changes and locally sustainable water resources management strategies.


2016 ◽  
Vol 17 (5) ◽  
pp. 1489-1516 ◽  
Author(s):  
Joel Arnault ◽  
Sven Wagner ◽  
Thomas Rummler ◽  
Benjamin Fersch ◽  
Jan Bliefernicht ◽  
...  

Abstract The analysis of land–atmosphere feedbacks requires detailed representation of land processes in atmospheric models. The focus here is on runoff–infiltration partitioning and resolved overland flow. In the standard version of WRF, runoff–infiltration partitioning is described as a purely vertical process. In WRF-Hydro, runoff is enhanced with lateral water flows. The study region is the Sissili catchment (12 800 km2) in West Africa, and the study period is from March 2003 to February 2004. The WRF setup here includes an outer and inner domain at 10- and 2-km resolution covering the West Africa and Sissili regions, respectively. In this WRF-Hydro setup, the inner domain is coupled with a subgrid at 500-m resolution to compute overland and river flow. Model results are compared with TRMM precipitation, model tree ensemble (MTE) evapotranspiration, Climate Change Initiative (CCI) soil moisture, CRU temperature, and streamflow observation. The role of runoff–infiltration partitioning and resolved overland flow on land–atmosphere feedbacks is addressed with a sensitivity analysis of WRF results to the runoff–infiltration partitioning parameter and a comparison between WRF and WRF-Hydro results, respectively. In the outer domain, precipitation is sensitive to runoff–infiltration partitioning at the scale of the Sissili area (~100 × 100 km2), but not of area A (500 × 2500 km2). In the inner domain, where precipitation patterns are mainly prescribed by lateral boundary conditions, sensitivity is small, but additionally resolved overland flow here clearly increases infiltration and evapotranspiration at the beginning of the wet season when soils are still dry. The WRF-Hydro setup presented here shows potential for joint atmospheric and terrestrial water balance studies and reproduces observed daily discharge with a Nash–Sutcliffe model efficiency coefficient of 0.43.


Author(s):  
Ricardo Santana ◽  
Enrique Onieva ◽  
Robin Zuluaga ◽  
Aliuska Duardo-Sánchez ◽  
Piedad Gañán

Background: Machine Learning (ML) has experienced an increasing use given the possibilities to expand the scientific knowledge of different disciplines, such as nanotechnology. This has allowed the creation of Cheminformatic models, capable of predicting biological activity and physicochemical characteristics of new components with high success rates in training and test partitions. Given the current gaps of scientific knowledge and the need of efficient application of medicines products law, this paper analyzes the position of regulators for marketing medicinal nanoproducts in European Union and the role of ML in the authorization process. Methods: In terms of methodology, a dogmatic study of the European regulation and the guidances of the European Medicine Agency on the use of predictive models for nanomaterials was carried out. The study has, as the framework of reference, the European Regulation 726/2004 and has focused on the analysis of how ML processes are contemplated in the regulations. Results: As result, we present a discussion of the information that must be provided for every case for simulation methods. The results show a favorable and flexible position for the development of the use of predictive models to complement the applicant's information. Conclusion: It is concluded that Machine Learning has the capacity to help to improve the application of nanotechnology medicine products regulation. Future regulations should promote this kind of information given the advanced state of art in terms of algorithms that are able to build accurate predictive models. This especially applies to methods such as Perturbation Theory Machine Learning (PTML), given that it is aligned with principles promoted by the standards of Organization for Economic Co-operation and Development (OECD), European Union regulations and European Authority Medicine. To our best knowledge this is the first study focused on nanotechnology medicine products and machine learning use to support technical European public assessment report (EPAR) for complementary information.


2018 ◽  
Vol 5 (2) ◽  
pp. 205395171881184 ◽  
Author(s):  
Petter Törnberg ◽  
Anton Törnberg

This paper reviews the contemporary discussion on the epistemological and ontological effects of Big Data within social science, observing an increased focus on relationality and complexity, and a tendency to naturalize social phenomena. The epistemic limits of this emerging computational paradigm are outlined through a comparison with the discussions in the early days of digitalization, when digital technology was primarily seen through the lens of dematerialization, and as part of the larger processes of “postmodernity”. Since then, the online landscape has become increasingly centralized, and the “liquidity” of dematerialized technology has come to empower online platforms in shaping the conditions for human behavior. This contrast between the contemporary epistemological currents and the previous philosophical discussions brings to the fore contradictions within the study of digital social life: While qualitative change has become increasingly dominant, the focus has gone towards quantitative methods; while the platforms have become empowered to shape social behavior, the focus has gone from social context to naturalizing social patterns; while meaning is increasingly contested and fragmented, the role of hermeneutics has diminished; while platforms have become power hubs pursuing their interests through sophisticated data manipulation, the data they provide is increasingly trusted to hold the keys to understanding social life. These contradictions, we argue, are partially the result of a lack of philosophical discussion on the nature of social reality in the digital era; only from a firm metatheoretical perspective can we avoid forgetting the reality of the system under study as we are affected by the powerful social life of Big Data.


2019 ◽  
Vol 18 (4) ◽  
pp. 384-392
Author(s):  
Hai Nguyen Tien ◽  
Dang Vu Hai ◽  
Phuc La The ◽  
Ha Nguyen Thai

On the basis of morphological characteristics and erosion - accumulation of sediment, it is possible to divide the stretch of the Gianh River from Co Cang to Cua Gianh (about 54km in length) into 3 sections as follows: Meandering channel (from Co Cang to Tien Xuan Isles): the length of the channel is 27.69km and the width of the channel is 80-250m. The channel is in the form of a meandering, narrow riverbed, flow plays a dominant role, deposition activities develop strongly at the convex side, while erosion occurs strongly in the concave side (cut side); Braided channel (from Tien Xuan Isles to Quang Phu): the length of the channel is 17.06km and the width of the channel is 800-2,200m. The channel is straight, the river bed is large and the depth of the river bed is 2-11m. Sedimentation occurs mainly at the bottom of the channel and creates bar in the middle of the channel; Straight channel (from Quang Phu to Cua Gianh): the length of the channel is 9.23km and the width of the channel is 800-1,000m. The channel is straight and the depth of the river bed is 8-12.5m. In addition to the role of river flow, it is strongly influenced by marine dynamics. The erosion and accretion activities occur mainly in estuaries. The results above show trend of river development: i) Meandering channel is the most vulnerable to changes for morphology of channel by erosion and accretion of sediment and can create 1-2 horseshoe pools by the river change line; ii) Braided channel mainly changes in the bottom of channel by the formation of channel bar; iii) Straight channel mainly changes in the estuary (the mouth of the river can be moved, enlarged or narrowed).


Sign in / Sign up

Export Citation Format

Share Document