scholarly journals ANOMALY DETECTION PERFORMANCE COMPARISON ON ANOMALY-DETECTION BASED CHANGE DETECTION ON MARTIAN IMAGE PAIRS

Author(s):  
A. R. D. Putri ◽  
P. Sidiropoulos ◽  
J.-P. Muller

<p><strong>Abstract.</strong> The surface of Mars has been imaged in visible wavelengths for more than 40 years since the first flyby image taken by Mariner 4 in 1964. With higher resolution from orbit from MOC-NA, HRSC, CTX, THEMIS, and HiRISE, changes can now be observed on high-resolution images from different instruments, including spiders (Piqueux et al., 2003) near the south pole and Recurring Slope Lineae (McEwen et al., 2011) observable in HiRISE resolution. With the huge amount of data and the small number of datasets available on Martian changes, semi-automatic or automatic methods are preferred to help narrow down surface change candidates over a large area.</p><p>To detect changes automatically in Martian images, we propose a method based on a denoising autoencoder to map the first Martian image to the second Martian image. Both images have been automatically coregistered and orthorectified using ACRO (Autocoregistration and Orthorectification) (Sidiropoulos and Muller, 2018) to the same base image, HRSC (High-Resolution Stereo Camera) (Neukum and Jaumann, 2004; Putri et al., 2018) and CTX (Context Camera) (Tao et al., 2018) orthorectified using their DTMs (Digital Terrain Models) to reduce the number of false positives caused by the difference in instruments and viewing conditions. Subtraction of the codes of the images are then inputted to an anomaly detector to look for change candidates. We compare different anomaly detection methods in our change detection pipeline: OneClassSVM, Isolation Forest, and, Gaussian Mixture Models in known areas of changes such as Nicholson Crater (dark slope streak), using image pairs from the same and different instruments.</p>

2020 ◽  
Vol 12 (17) ◽  
pp. 2669
Author(s):  
Junhao Qian ◽  
Min Xia ◽  
Yonghong Zhang ◽  
Jia Liu ◽  
Yiqing Xu

Change detection is a very important technique for remote sensing data analysis. Its mainstream solutions are either supervised or unsupervised. In supervised methods, most of the existing change detection methods using deep learning are related to semantic segmentation. However, these methods only use deep learning models to process the global information of an image but do not carry out specific trainings on changed and unchanged areas. As a result, many details of local changes could not be detected. In this work, a trilateral change detection network is proposed. The proposed network has three branches (a main module and two auxiliary modules, all of them are composed of convolutional neural networks (CNNs)), which focus on the overall information of bitemporal Google Earth image pairs, the changed areas and the unchanged areas, respectively. The proposed method is end-to-end trainable, and each component in the network does not need to be trained separately.


Author(s):  
W. Liu ◽  
J. Yang ◽  
J. Zhao ◽  
H. Shi ◽  
L. Yang

Most of the existing change detection methods using full polarimetric synthetic aperture radar (PolSAR) are limited to detecting change between two points in time. In this paper, a novel method was proposed to detect the change based on time-series data from different sensors. Firstly, the overall difference image of a time-series PolSAR was calculated by ominous statistic test. Secondly, difference images between any two images in different times ware acquired by R<sub>j</sub> statistic test. Generalized Gaussian mixture model (GGMM) was used to obtain time-series change detection maps in the last step for the proposed method. To verify the effectiveness of the proposed method, we carried out the experiment of change detection by using the time-series PolSAR images acquired by Radarsat-2 and Gaofen-3 over the city of Wuhan, in China. Results show that the proposed method can detect the time-series change from different sensors.


2019 ◽  
Vol 16 (8) ◽  
pp. 3410-3418
Author(s):  
Muhammed Shuaau ◽  
Ka Fei Thang

Autonomous anomaly detection has attracted significant amount of attention in the past decade due to increased security concerns all around the world. The volume of data reported by surveillance cameras has outrun human capacity and there exists a greater need for anomaly detection systems for crime monitoring. This project proposes a solution to this problem in a reception area context by using trajectory analysis. Trajectory extraction is proposed by using Gaussian Mixture Models and Kalman Filter for data association. Then trajectory analysis is performed on extracted trajectories to detect four different anomalies which are entering staff area, running, loitering and squatting down. The proposed anomaly detection method is tested on datasets recorded at Asia Pacific University’s reception area. The proposed algorithms were able to achieve a detection accuracy of 89% and a false positive rate of 4.52%. The results presented show the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document