scholarly journals EXTRACTION AND TRANSFORMATION OF IFC DATA TO CITYGML FORMAT

Author(s):  
M. J. Sani ◽  
I. A. Musliman ◽  
A. Abdul Rahman

Abstract. The integration of Geographic Information System (GIS) and the Building Information Modeling (BIM) referred to as the merging of the two systems for the purpose of data interoperability. The need to share information between the two systems is what motivated the integration process purposely for geospatial analysis. This can be achieved through their data exchange formats such as; City Markup Language (CityGML) and Industry Foundation Classes (IFC). The formats are the two most prominent key schemas of GIS and BIM systems respectively. The integration is a step towards information exchange or sharing (data interoperability) between the two systems. The selection of the two most prominent data exchange formats is as a result of their widespread applications in the GIS and BIM domains. However, the differences in geometric and the semantics information hinders data interoperability (information sharing) between GIS and BIM. Also, coupled with the difference in schema structure and the level of information richness between IFC and CityGML. This paper, propose a geometry transformation process that can be used to extract and transform IFC building objects to that of CityGML building objects to enable 3D model design and constructed using BIM tool to be easily reused in 3D GIS applications which will be able to support the CityGML model format. Where the geometric information will be extracted using the IFC tree-structure (hierarchy) and transformed to destination CityGML.

2020 ◽  
Vol 10 (13) ◽  
pp. 4437 ◽  
Author(s):  
Carlo Iapige De Gaetani ◽  
Mertkan Mert ◽  
Federica Migliaccio

It is incontrovertible that an exchange of files is essentially required at several stages of the workflow in the architecture, engineering, and construction (AEC) industry. Therefore, investigating and detecting the capabilities/inabilities of building information modeling (BIM) software packages with respect to interoperability can be informative to stakeholders who exchange data between various BIM packages. The work presented in this paper includes a discussion on the interoperability of different software platforms commonly used in the AEC industry. Although, in theory, flawless interoperability of some types of files between different BIM platforms is ensured, in practical applications, this is not always the case. Hence, this research aims to identify faults in data exchange by assessing different possible scenarios where a sample Industry Foundation Classes (IFC) four-dimensions (4D) BIM model and related Gantt charts are exchanged. Throughout the interoperability analysis of both IFC file and Gantt charts, the following checks were carried out: geometrical and nongeometrical information exchange through IFC files, 4D information correct readability, and presence of missing schedule information in Gantt charts after their import/export procedure. The results show that interoperability between the analyzed platforms is not always ensured, providing useful insight into realistic scenarios.


2018 ◽  
Vol 24 (7) ◽  
pp. 537-555 ◽  
Author(s):  
Huahui Lai ◽  
Xueyuan Deng

Traditionally, the one-to-one interaction between heterogeneous software has become the most commonly used method for multi-disciplinary collaboration in building projects, resulting in numerous data interfaces, different data formats, and inefficient collaboration. As the prevalence of Building Information Modeling (BIM) increases in building projects, it is expected that the exchange of Industry Foundation Classes (IFC)-based data can smoothly take place between heterogeneous BIM software. However, interoperability issues frequently occur during bidirectional data exchanges using IFC. Hence, a data interoperability experiment, including architectural, structural and MEP models from a practical project, was conducted to analyze these issues in the process of data import and re-export between heterogeneous software. According to the results, the fundamental causes of interoperability issues can be concluded as follows: (a) software tools cannot well interpret several objects belonging to other disciplines due to the difference in domain knowledge; (b) software tools have diverse methods to represent the same geometry, properties and relations, leading to inconsistent model data. Furthermore, this paper presents a suggested method for improving the existing bidirectional data sharing and exchange: BIM software tools export models using IFC format, and these IFC models are imported into a common IFC-based BIM platform for data interoperability.


Author(s):  
Yong-Cheol Lee ◽  
Charles M Eastman ◽  
Wawan Solihin

Abstract Diverse industries have recognized the significance of a neutral data standard for seamless building information modeling (BIM) data exchanges and adopted commonly agreed schemes such as the industry foundation classes (IFC) schema for enhancing BIM data interoperability. To selectively employ domain-specific data exchange requirements, the AEC-FM (the Architecture, Engineering, Construction, and Facility Management) industries have developed their own schema with a subset of the IFC schema, named a model view definition (MVD). However, because of latent human errors, inadequate MVD definitions, and error-prone data mapping problems, the adoption of IFC for exchanging and sharing BIM data is frequently limited with severe data integrity issues. This challenging situation requires the detailed examination of the limitations of the heterogeneous IFC translation processes of the current BIM authoring and application tools. To accomplish this objective, the authors thoroughly investigated the two MVDs, the Coordination View Version 2.0 and the Construction Operations Building Information Exchange, broadly used as an international standard for developing the IFC translation processes, and then identified their intrinsic requirements/rules and developed rule-based data validation processes. These new intrinsic knowledge of the two MVD specifications will be fundamental foundations to create coherent BIM data exchange systems that are currently scattered and dispersed in heterogeneous IFC translation processes and structures. Newly revealed rules pertaining to these two MVDs have been executed with IfcDoc, which is the IFC documentation tool. This BIM data validation process is expected to not only accurately evaluate the translation processes between BIM native data and IFC ones but also help industry professionals ensure the integrity and the accuracy of their BIM data according to the BIM data exchange standards using the two MVDs. In addition, the outcomes of this research study are expected to bolster the interoperable BIM adoption and offer the values of greater consistency of BIM data exchange.


Author(s):  
C. Clemen ◽  
M. Schröder ◽  
T. Kaiser ◽  
E. Romanschek

Abstract. Digital Terrain Models (DTM) play an important role for digital twins of the built environment. However, if the Building Information Modeling method (BIM) is used, many engineers find it difficult to provide BIM-compliant terrain models. We present a small tool with which classic DTM, which have been created by landsurveyors or geospatial engineers, can be converted into the format Industry Foundation Classes (IFC) in order to be used in openBIM projects. This paper first clarifies the use cases and then goes into detail on possible configurations of the transformation process. With the presented software tool IfcTerrain the user may select different export options concerning IFC object type of the terrain, geometric representation, georeferencing or the annotation with metadata. IfcTerrain is free and open source and was developed in the context of an educational institution.


Author(s):  
G. S. Floros ◽  
G. Boyes ◽  
D. Owens ◽  
C. Ellul

<p><strong>Abstract.</strong> Modern cities pay particular attention to upscale their infrastructure systems in order to improve the every-day life of their citizens and lead the way towards a more sustainable environment. As part of this, they invest extensive funds in large infrastructure projects which are challenging to deliver as they require an e efficient communication among different professions, in order to share information efficiently throughout the lifecycle of the project, thus highlighting the importance of standardization to maintain consistency and integrity during data exchange. Building Information Modelling (BIM) aims to facilitate the above-mentioned requirements by describing the life-cycle of the project and Industry Foundation Classes (IFC) is the Standard for BIM that enables an efficient storage, management, exchange and visualization of information. However, there are two important challenges that need to be addressed: (i) IFC focuses particularly on buildings and provides limited support for infrastructure elements and (ii) the information exchange aims to describe mostly the construction phase; highlighting the lack of classes that refer to the operation and maintenance phase. Within this context, this paper proposes the extension of Industry Foundation Classes (IFC) for Asset Management in Infrastructure. A method is developed based on a case study of three highway entities: (i) retaining wall, (ii) gantry and (iii) bridge and a conceptual extension is presented. The results are further discussed and recommendations regarding future research fields are proposed.</p>


2017 ◽  
Vol 15 (3) ◽  
pp. 187-202 ◽  
Author(s):  
Kereshmeh Afsari ◽  
Charles Eastman ◽  
Dennis Shelden

Collaboration within Building Information Modeling process is mainly based on the manual transfer of document files in either vendor-specific formats or neutral format using Industry Foundation Classes. However, since the web enables Cloud-based Building Information Modeling services, it provides an opportunity to exchange data with web technologies. Alternative data sharing solutions include the federation of Building Information Modeling models and an interchange hub for data exchange in real time. These solutions face several challenges, are vendor locked, and integrate Building Information Modeling applications to a third new system. The main objective of this article is to investigate current limitations as well as opportunities of Cloud interoperability to outline a framework for a loosely coupled network-based Building Information Modeling data interoperability. This study explains that Cloud-Building Information Modeling data exchange needs to deploy major components of Cloud interoperability such as Cloud application programming interfaces, data transfer protocols, data formats, and standardization to redefine Building Information Modeling data flow in Cloud-based applications and to reshape collaboration process.


2020 ◽  
Vol 12 (14) ◽  
pp. 2301
Author(s):  
Mario Soilán ◽  
Andrés Justo ◽  
Ana Sánchez-Rodríguez ◽  
Belén Riveiro

Building information modeling (BIM) is a process that has shown great potential in the building industry, but it has not reached the same level of maturity for transportation infrastructure. There is a standardization need for information exchange and management processes in the infrastructure that integrates BIM and Geographic Information Systems (GIS). Currently, the Industry Foundation Classes standard has harmonized different infrastructures under the Industry Foundation Classes (IFC) 4.3 release. Furthermore, the usage of remote sensing technologies such as laser scanning for infrastructure monitoring is becoming more common. This paper presents a semi-automated framework that takes as input a raw point cloud from a mobile mapping system, and outputs an IFC-compliant file that models the alignment and the centreline of each road lane in a highway road. The point cloud processing methodology is validated for two of its key steps, namely road marking processing and alignment and road line extraction, and a UML diagram is designed for the definition of the alignment entity from the point cloud data.


2021 ◽  
Vol 263 ◽  
pp. 04062
Author(s):  
Olga Baranova

Building Information Modeling (BIM) technology is one of the most actively developing approaches to the digital representation of the design of buildings and structures, which makes it possible to ensure the relationship of both geometric and functional characteristics of a designed object. The organization of information exchange within the framework of the development of IM during various stages of the life cycle is a rather difficult task, since the historical development of software products used for the design of IM elements has led to the use of various data presentation formats for solving specialized design and calculation problems. In the documents analyzed in the work, two formats with an open specification — IFC and XML — are mentioned as a means of information exchange in the development of IM. In addition to the undoubted advantages of using the IFC using the EXPRESS data specification language as a means of ensuring the interoperability of information systems, there are currently difficulties with the practical application of this format in information modeling, including for organizing joint work. XML-schema can be used as an alternative to the representation of IM in the IFC for organizing data exchange between various information systems, including when implementing joint work on IM through web applications. The use of alternative to EXPRESS schemes for the definition of IM data makes it possible to simplify the organization of information transfer between participants in the information exchange, as well as to unify the presentation of design information.


Author(s):  
Bonsang Koo ◽  
Raekyu Jung ◽  
Youngsu Yu ◽  
Inhan Kim

Abstract Data interoperability between domain-specific applications is a key prerequisite for building information modeling (BIM) to solidify its position as a central medium for collaboration and information sharing in the construction industry. The Industry Foundation Classes (IFC) provides an open and neutral data format to standardize data exchanges in BIM, but is often exposed to data loss and misclassifications. Concretely, errors in mappings between BIM elements and IFC entities may occur due to manual omissions or the lack of awareness of the IFC schema itself, which is broadly defined and highly complex. This study explored the use of geometric deep learning models to classify infrastructure BIM elements, with the ultimate goal of automating the prechecking of BIM-to-IFC mappings. Two models with proven classification performance, Multi-View Convolutional Neural Network (MVCNN) and PointNet, were trained and tested to classify 10 types of commonly used BIM elements in road infrastructure, using a dataset of 1496 3D models. Results revealed MVCNN as the superior model with ACC and F1 score values of 0.98 and 0.98, compared with PointNet's corresponding values of 0.83 and 0.87, respectively. MVCNN, which employs multiple images to learn the features of a 3D artifact, was able to discern subtle differences in their shapes and geometry. PointNet seems to lose the granularity of the shapes, as it uses points partially selected from point clouds.


2021 ◽  
Vol 13 (4) ◽  
pp. 2039
Author(s):  
Juan F. Dols ◽  
Jaime Molina ◽  
F. Javier Camacho-Torregrosa ◽  
David Llopis-Castelló ◽  
Alfredo García

The analysis of road safety is critical in road design. Complying to guidelines is not enough to ensure the highest safety levels, so many of them encourage designers to virtually recreate and test their roads, benefitting from the evolution of driving simulators in recent years. However, an accurate recreation of the road and its environment represents a real bottleneck in the process. A very important limitation lies in the diversity of input data, from different sources and requiring specific adaptations for every single simulator. This paper aims at showing a framework for recreating faster virtual scenarios by using an Industry Foundation Classes (IFC)-based file. This methodology was compared to two other conventional methods for developing driving scenarios. The main outcome of this study has demonstrated that with a data exchange file in IFC format, virtual scenarios can be faster designed to carry out safety audits with driving simulators. As a result, the editing, programming, and processing times were substantially reduced using the proposed IFC exchange file format through a BIM (Building Information Modeling) model. This methodology facilitates cost-savings, execution, and optimization resources in road safety analysis.


Sign in / Sign up

Export Citation Format

Share Document