scholarly journals Characteristics of debris avalanche deposits inferred from source volume estimate and hummock morphology around Mt. Erciyes, central Turkey

2018 ◽  
Vol 18 (2) ◽  
pp. 429-444 ◽  
Author(s):  
Yuichi S. Hayakawa ◽  
Hidetsugu Yoshida ◽  
Hiroyuki Obanawa ◽  
Ryutaro Naruhashi ◽  
Koji Okumura ◽  
...  

Abstract. Debris avalanches caused by volcano sector collapse often form characteristic depositional landforms such as hummocks. Sedimentological and geomorphological analyses of debris avalanche deposits (DADs) are crucial to clarify the size, mechanisms, and emplacement of debris avalanches. We describe the morphology of hummocks on the northeastern flank of Mt. Erciyes in Kayseri, central Turkey, likely formed in the late Pleistocene. Using a remotely piloted aircraft system (RPAS) and the structure-from-motion and multi-view stereo (SfM–MVS) photogrammetry, we obtained high-definition digital elevation model (DEM) and orthorectified images of the hummocks to investigate their geometric features. We estimated the source volume of the DAD by reconstructing the topography of the volcano edifice using a satellite-based DEM. We examined the topographic cross sections based on the slopes around the scar regarded as remnant topography. Spatial distribution of hummocks is anomalously concentrated at a certain distance from the source, unlike those that follow the distance–size relationship. The high-definition land surface data by RPAS and SfM revealed that many of the hummocks are aligned toward the flow direction of the debris avalanche, suggesting that the extensional regime of the debris avalanche was dominant. However, some displaced hummocks were also found, indicating that the compressional regime of the flow contributed to the formation of hummocks. These indicate that the flow and emplacement of the avalanche were constrained by the topography. The existing caldera wall forced the initial eastward flow to move northward, and the north-side caldera wall forced the flow into the narrow and steepened outlet valley where the sliding debris underwent a compressional regime, and out into the unconfined terrain where the debris was most likely emplaced on an extensional regime. Also, the estimated volume of 12–15 × 108 m3 gives a mean thickness of 60–75 m, which is much deeper than the reported cases of other DADs. This suggests that the debris avalanche must have flowed further downstream and beyond the current DAD extent. Assessments of the DAD incorporating the topographic constraints can provide further insights into the risk and mitigation of potential disasters in the study area.

2017 ◽  
Author(s):  
Yuichi S. Hayakawa ◽  
Hidetsugu Yoshida ◽  
Hiroyuki Obanawa ◽  
Ryutaro Naruhashi ◽  
Koji Okumura ◽  
...  

Abstract. Debris avalanche caused by the sector collapse of a volcanic mountain often forms characteristic depositional landforms including hummocks. Not only sedimentological but also geomorphological analyses of debris avalanche deposits (DAD) are crucial to clarify the size, mechanisms, and processes of the debris avalanche. We investigate the morphology of hummocks newly identified in the DAD at the north-eastern flank of Mt. Erciyes in Kayseri, central Turkey, likely formed in the late Pleistocene. Using a remotely piloted aircraft system (RPAS) and the structure-from-motion multi-view stereo photogrammetry (SfM), we obtained high-definition digital elevation model (DEM) and orthorectified image of the DAD surface with hummocks. Detailed geometric features of the hummocks are investigated using the RPAS-derived high-definition DEM. The source volume of the DAD was also estimated by reconstructing the original shape of the mountain body using a lower-resolution satellite-based DEM. For this, topographic cross sections are examined based on the slopes around the scar that are regarded as the remnant topography preserved since the sector collapse. The spatial distribution of hummocks shows an unusual pattern regarding the distance-size relationships, i.e., anomalously concentrated in a certain distance from the source. The hummocks are found to be aligned toward the flow direction of the debris avalanche, suggesting the extensional regime of the debris avalanche. These facts indicate that this debris avalanche did not follow the typical flow type of debris avalanches observed in the other cases. Instead, the topographic constraints by former caldera wall and fault-induced lineaments could have strongly affected the flow course and pattern in this particular case: The pre-existing caldera wall topography could have acted as the topographic barriers for the debris avalanche to force the initial flow to turn northward, and the flow regime to be once compressional followed by extensional at the narrow and steepened outlet valley. Also, the estimated volume of the DAD 12–15 × 108 m3 gives its mean thickness of 60–75 m, which is much deeper than the reported cases of other DADs. This suggests that the debris avalanche could have flown down to the far downstream areas from the presently-observed limit of the DAD extent. Assessments of the DAD including the results of this study can provide further insights into the risk and mitigation of potential disasters in the study area.


Author(s):  
Matteo Roverato ◽  
Anja Dufresne ◽  
Jon Procter

<p>This year marks the 40<sup>th</sup> anniversary of the 1980 Mt. St. Helens eruption and sector collapse. In acknowledgement to the vast research dedicated to understanding volcano collapse and debris avalanche dynamics, we have collated in a book the topic’s current state of the art. Within 12 chapters, this book contains reviews of and new insights from the work done over the past four decades, and provides outlooks and recommendations for future research. It is part of the Springer Book Series ‘Advances in Volcanology’ and the chapters contributed by a team of experts cover the following topics:</p><ol><li>Introduction </li> <li>A historical perspective on lateral collapse and debris avalanches</li> <li>Terminology and strategy to describe volcanic landslides and debris avalanches </li> <li>Distribution and geometric parameters of volcanic debris avalanche deposits </li> <li>Destabilizing factors that promote volcano flank collapse</li> <li>Volcanic debris avalanche transport kinematics and emplacement mechanisms</li> <li>Sedimentology of volcanic debris avalanche deposits</li> <li>Climatic and paleo-climatic implications </li> <li>Computer simulation of volcanic debris avalanches</li> <li>Volcanic debris avalanche deposits in the context of volcaniclastic ringplain successions</li> <li>Cyclicity in edifice destruction and regrowth </li> <li>Volcanic island lateral collapses and submarine volcanic debris avalanche deposits</li> </ol><p>Finally, the aim of the book is to reach the professional research community as well as students and a broader audience interested in hazard management in volcanic environments.</p>


1994 ◽  
Vol 31 (11) ◽  
pp. 1630-1637 ◽  
Author(s):  
Robert Gilbert ◽  
John Shaw

Paleozoic rocks form an escarpment up to 35 m high at the border with the Frontenac Axis of the Canadian Shield in southeastern Ontario. The escarpment, which lies nearly transverse to the flow direction of Pleistocene ice and subglacial meltwater in the region, is cut by a series of deep channels locally incised into the bedrock at the escarpment. A subbottom acoustic survey of two of these channels and mapping of a third, partly flooded channel revealed the shape of the bedrock surface beneath the water and glacial and postglacial sediments of lakes now occupying the channels. Most cross sections show a smooth-walled, dominant depression eroded up to 100 m below the land surface nearby, and flanked by one or more secondary depressions. The pattern changes considerably in detail, making secondary depressions especially difficult to trace along the length of the lake. The pattern is similar to that of subglacial fluvial erosion marks more than three orders of magnitude smaller found in bedrock throughout the region. We ascribe the origin of these channels cut across the escarpment to periodic, large flows of water beneath the Laurentide Ice Sheet. The escarpment formed a barrier through which the flow was forced at regular intervals, eroding large-scale channels at these sites of confined and accelerated flow, while the ice was still largely in contact with the surrounding surface. At the highest flows the entire surface was flooded and eroded.


2021 ◽  
Vol 11 (4) ◽  
pp. 1486
Author(s):  
Cuiping Kuang ◽  
Yuhua Zheng ◽  
Jie Gu ◽  
Qingping Zou ◽  
Xuejian Han

Groins are one of the popular manmade structures to modify the hydraulic flow and sediment response in river training. The spacing between groins is a critical consideration to balance the channel-depth and the cost of construction, which is generally determined by the backflow formed downstream from groins. A series of experiments were conducted using Particle Image Velocimetry (PIV) to observe the influence of groin spacing on the backflow pattern of two bilateral groins. The spacing between groins has significant effect on the behavior of the large-scale recirculation cell behind groins. The magnitude of the wake flow induced by a groin was similar to that induced by another groin on the other side, but the flow direction is opposite. The spanwise velocity near the groin tip dictates the recirculation zone width behind the groins due to the strong links between the spanwise velocity and the contraction ratio of channel cross-sections between groins. Based on previous studies and present experimental results, quantitative empirical relationships are proposed to calculate the recirculation zone length behind groins alternately placed at different spacing along riverbanks. This study provides better understanding and a robust formula to assess the backflow extent of alternate groins and identify the optimum groins array configuration.


1986 ◽  
Vol 251 (6) ◽  
pp. H1324-H1332 ◽  
Author(s):  
A. R. Pries ◽  
K. Ley ◽  
P. Gaehtgens

Microvessel hematocrits and diameters were determined in each vessel segment between bifurcations of three complete microvascular networks in rat mesentery. Classification of the segments as arteriolar, venular, or arteriovenular (av) was based on flow direction at branch points. Photographic and videomicroscopic mapping was used to obtain quantitative information on the architecture and topology of the networks. This topological information allowed the analysis of hematocrit distribution within a series of consecutive-flow cross sections, each of which carried the total flow through the network. The observed reduction of mean hematocrit in the more peripheral cross sections is explained by the presence of a “vessel” and a “network” Fahraeus effect. The vessel Fahraeus effect results from velocity difference between red cells and blood within the individual vessel segments due to the existing velocity and cell concentration profiles. The network Fahraeus effect is based on the velocity difference of red cells and blood caused by velocity and hematocrit heterogeneity between the vessels constituting any of the complete-flow cross sections. The network Fahraeus effect is found to account for approximately 20% of the total hematocrit reduction and increases toward the most distal cross sections.


2012 ◽  
Vol 226-228 ◽  
pp. 1829-1834 ◽  
Author(s):  
Jing Yuan Tang ◽  
Jian Ming Chen ◽  
Hong Bin Ma ◽  
Guang Yu Tang

The flow field characteristics in U-typed bend has been extensively studied for transit time ultrasonic flowmeters designing, but for the flowmeter with three-Z-shaped round pipe there is still lack of corresponding research. This paper presents a computational fluid dynamics (CFD) approach for modeling of the three-Z-shaped ultrasonic flowmeter and studying of internal fluid field characteristics based on Reynolds stress model (RSM). The fluid velocity profile in the three ultrasound path is obtained using CFD and secondary flow in cross section also is analyzed. The simulation results show that the internal flow fields in the flowmeter are not fully developed turbulence with asymmetric axial velocity distribution and dramatic changes along the flow direction, and there are obvious secondary cross flows on theirs cross-sections. The CFD simulations provide useful insights into the flow field associated with ultrasonic flowmeters design.


Soil Research ◽  
1963 ◽  
Vol 1 (2) ◽  
pp. 223 ◽  
Author(s):  
PH Walker

Two major periods of avalanching have occurred along the Illawarra scarpland. The older, the Scarborough formation, is characterized by a very thick, acid, weathered zone, similar to the lower mottled horizons of laterite profiles. The younger, Keira formation, has relatively shallow red and yellow earth profiles developed in it. Although its profile of deep weathering has some features in common with laterite, the Scarborough formation is not part of the general laterite surface, but represents a separate period of prolonged stability and weathering. The debris-avalanches are thought to have been deposited during excessively wet climatic conditions in the past, and they represent an alternate form of instability compared with the dry phase instability proposed for the K-cycle history of milder hillslope terrain near Nowra.


2020 ◽  
Vol 307 ◽  
pp. 01047
Author(s):  
Gohar Shoukat ◽  
Farhan Ellahi ◽  
Muhammad Sajid ◽  
Emad Uddin

The large energy consumption of membrane desalination process has encouraged researchers to explore different spacer designs using Computational Fluid Dynamics (CFD) for maximizing permeate per unit of energy consumed. In previous studies of zigzag spacer designs, the filaments are modeled as circular cross sections in a two-dimensional geometry under the assumption that the flow is oriented normal to the filaments. In this work, we consider the 45° orientation of the flow towards the three-dimensional zigzag spacer unit, which projects the circular cross section of the filament as elliptical in a simplified two-dimensional domain. OpenFOAM was used to simulate the mass transfer enhancement in a reverse-osmosis desalination unit employing spiral wound membranes lined with zigzag spacer filaments. Properties that impact the concentration polarization and hence permeate flux were analyzed in the domain with elliptical filaments as well as a domain with circular filaments to draw suitable comparisons. The range of variation in characteristic parameters across the domain between the two different configurations is determined. It was concluded that ignoring the elliptical projection of circular filaments to the flow direction, can introduce significant margin of error in the estimation of mass transfer coefficient.


2015 ◽  
Vol 26 (5) ◽  
pp. 795-819
Author(s):  
P. E. WESTWOOD ◽  
F. T. SMITH

The theoretical investigation here of a three-dimensional array of jets of fluid (air guns) and their interference is motivated by applications to the food sorting industry especially. Three-dimensional motion without symmetry is addressed for arbitrary jet cross-sections and incident velocity profiles. Asymptotic analysis based on the comparatively long axial length scale of the configuration leads to a reduced longitudinal vortex system providing a slender flow model for the complete array response. Analytical and numerical studies, along with comparisons and asymptotic limits or checks, are presented for various cross-sectional shapes of nozzle and velocity inputs. The influences of swirl and of unsteady jets are examined. Substantial cross-flows are found to occur due to the interference. The flow solution is non-periodic in the cross-plane even if the nozzle array itself is periodic. The analysis shows that in general the bulk of the three-dimensional motion can be described simply in a cross-plane problem but the induced flow in the cross-plane is sensitively controlled by edge effects and incident conditions, a feature which applies to any of the array configurations examined. Interference readily alters the cross-flow direction and misdirects the jets. Design considerations centre on target positioning and jet swirling.


Sign in / Sign up

Export Citation Format

Share Document