reynolds stress model
Recently Published Documents


TOTAL DOCUMENTS

537
(FIVE YEARS 78)

H-INDEX

30
(FIVE YEARS 3)

Author(s):  
Yixiang Liao ◽  
Tian Ma

AbstractBubbly flow still represents a challenge for large-scale numerical simulation. Among many others, the understanding and modelling of bubble-induced turbulence (BIT) are far from being satisfactory even though continuous efforts have been made. In particular, the buoyancy of the bubbles generally introduces turbulence anisotropy in the flow, which cannot be captured by the standard eddy viscosity models with specific source terms representing BIT. Recently, on the basis of bubble-resolving direct numerical simulation data, a new Reynolds-stress model considering BIT was developed by Ma et al. (J Fluid Mech, 883: A9 (2020)) within the Euler—Euler framework. The objective of the present work is to assess this model and compare its performance with other standard Reynolds-stress models using a systematic test strategy. We select the experimental data in the BIT-dominated range and find that the new model leads to major improvements in the prediction of full Reynolds-stress components.


2021 ◽  
Vol 9 (2) ◽  
pp. 9-19
Author(s):  
Mohammed Ghalib Al-Azawy

This article describes the numerical investigation of blood rheology within an artery that includes two narrowing areas via Computational Fluid Dynamics (CFD). Elliptic blending Reynolds stress model and two models of viscosity have been used in this investigation utilizing STAR-CCM+ 2021.2.1. The test model includes two elliptical stenosis with a 2mm distance between them, and the area of stenosis is 75%. Results of normalized axial velocity, turbulent kinetic energy (TKE) and turbulent viscosity ratio (TVR) were evaluated before, through and after the stenosis in order to predict and avoid the real problems that occur from changing the area of the artery. Furthermore, Fractional flow reserve (FFR) was employed to assess the level of risk of stenosis through the artery, which depends on pressure measurements. Corresponding to the author's observation, it was found that the recirculation regions in the area between the stenosis are larger than the area after the stenosis. Moreover, the results of TKE and TVR are almost identical through and downstream of the stenosis, whereas the TKE is slightly higher with the Carreau model than with the Newtonian flow at the upstream and through the first stenosis.


2021 ◽  
Vol 9 (2) ◽  
pp. 9-19
Author(s):  
Mohammed G. Al-Azawy

AbstractThis article describes the numerical investigation of blood rheology within an artery that includes two narrowing areas via Computational Fluid Dynamics (CFD) to offer guidance to the community, especially surgeons, and help them to avoid the risk of stenosis. Elliptic blending Reynolds stress model and two models of viscosity have been used in this investigation utilizing STAR-CCM+ 2021.2.1. The test model includes two elliptical stenosis with a 2mm distance between them, and the area of stenosis is 75%. Results of normalized axial velocity, turbulent kinetic energy (TKE) and turbulent viscosity ratio (TVR) were evaluated before, through and after the stenosis in order to predict and avoid the real problems that occur from changing the area of the artery. Furthermore, Fractional flow reserve (FFR) was employed to assess the level of risk of stenosis through the artery, which depends on pressure measurements. Corresponding to the author's observation, it was found that the recirculation regions in the area between the stenosis are larger than the area after the stenosis. Moreover, the results of TKE and TVR are almost identical through and downstream of the stenosis, whereas the TKE is slightly higher with the Carreau model (arrive to 0.54 J/kg) than with the Newtonian flow (arrive to o.47 J/kg) at the upstream and through the first stenosis.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8122
Author(s):  
Vyacheslav Volov ◽  
Nikolay Elisov ◽  
Anton Lyaskin

Despite the application of vortex tubes for cooling, separating gas mixtures, vacuuming, etc., the mechanism of energy separation in vortex tubes remains an object of discussion. This paper studies the effect of secondary swirling in supersonic flows on the energy separation of monatomic and diatomic gases. The approach used is a numerical solution of the Reynolds-averaged Navier-Stokes equations, closed by the Reynolds Stress Model turbulence model. The modelling provided is for a self-vacuuming vortex tube with air, helium, argon, and carbon dioxide. According to the results of the calculations, the effect of secondary swirling is inherent only in viscous gases. A comparison was made between obtained total temperature difference, the level of secondary swirling and power losses on expansion from the nozzle, compression shocks, friction, turbulence, and energy costs to develop cascaded swirl structures. Our results indicate that helium and argon have the highest swirling degree and, consequently, the highest energy separation. Moreover, it can be concluded that the power costs on the development of cascaded vortex structures have a significant role in the efficiency of energy separation.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012024
Author(s):  
V.V. Lemanov ◽  
M.A. Pakhomov ◽  
V.I. Terekhov ◽  
Z. Travnicek

Abstract An unsteady local heat transfer in an air synthetic non-steady-state jet impingement onto a flat plate with a variation of the Reynolds number, nozzle-to-plate distance and pulses frequency is experimentally and numerically studied. Measurements of the averaged and pulsating heat transfer at the stagnation point are conducted using a heat flux sensor. The axisymmetric URANS method and the Reynolds stress model are used for numerical simulations. For local values of heat transfer, zones with the maximum instantaneous value of heat flux and heat transfer coefficient are identified. The heat transfer increases at relatively low nozzle-to-plate distances (H/d ≤ 4). The heat transfer decreases at high distance from the orifice and target surface. An increase in the Reynolds number causes reduction of heat transfer.


AIAA Journal ◽  
2021 ◽  
pp. 1-20
Author(s):  
Bernhard Eisfeld ◽  
Christopher L. Rumsey ◽  
Vamshi Togiti ◽  
Sebastian Braun ◽  
Arne Stürmer

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Huawei Xie ◽  
Shubham Sharma ◽  
Milad Sadeghzadeh ◽  
Alibek Issakhov

The estuary of a river can be seen as a relatively free and partially closed coastal body. It is connected to the ocean and is a transitional zone of rivers, which contains processes from land to sea and from fresh water to salt water. The estuary is one of the most productive natural habitats in the world and carries a large number of sediments due to natural factors such as changes in runoff and tides. Therefore, many coastal areas with river estuaries have become the most densely populated areas in the human population. In this paper, the RSM (Reynolds stress model) turbulence model and the PID (proportional integral derivative) algorithm are successfully used to simulate the dynamic model and for the numerical simulation of the formation of turbidity maximum zone in the estuary, which provides a theoretical basis for the follow-up of the similar research studies.


2021 ◽  
Author(s):  
Samuel Altland ◽  
Haosen H. A. Xu ◽  
Xiang I. A. Yang ◽  
Robert Kunz

Abstract Flow over arrays of cubes is an extensively studied model problem for rough wall turbulent boundary layers. While considerable research has been performed in computationally investigating these topologies using DNS and LES, the ability of sublayer-resolved RANS to predict the bulk flow phenomena of these systems is relatively unexplored, especially at low and high packing densities. Here, RANS simulations are conducted on six different packing densities of cubes in aligned and staggered configurations. The packing densities investigated span from what would classically be defined as isolated, up to those in the d-type roughness regime, filling in the gap in the present literature. Three different sublayer-resolved turbulence closure models were tested for each case; a low Reynolds number k-ε model, the Menter k-ω SST model, and a full Reynolds stress model. Comparisons of the velocity fields, secondary flow features, and drag coefficients are made between the RANS results and existing LES and DNS results. There is a significant degree of variability in the performance of the various RANS models across all comparison metrics. However, the Reynolds stress model demonstrated the best accuracy in terms of the mean velocity profile as well as drag partition across the range of packing densities.


2021 ◽  
Vol 11 (16) ◽  
pp. 7332
Author(s):  
Ilryong Park ◽  
Jein Kim ◽  
Bugeun Paik ◽  
Hanshin Seol

In this paper, the inception of tip vortex cavitation in weak water has been predicted using a numerical simulation, and a new scaling concept with variable exponent has also been suggested for cavitation inception index. The numerical simulations of the cavitating flows over an elliptic planform hydrofoil were performed by using the RANS approach with a Eulerian cavitation model. To ensure the accuracy of the present simulations, the effects of the turbulence model and grid resolution on the tip vortex flows were investigated. The turbulence models behaved differently in the boundary layer of the tip region where the tip vortex is developed, which resulted in different pressure and velocity fields in the vortex region. Furthermore, the Reynolds stress model for the finest grid showed a better agreement with the experimental data. The tip vortex cavitation inception numbers for the foil, predicted by using both wetted and cavitating flow simulation approaches, were compared with the measured cavitation index values, showing a good correlation. The current cavitation scaling study also suggested new empirical relations as a function of the Reynolds number substitutable for the two classic constant scaling exponents. This scaling concept showed how the scaling law changes with the Reynolds number and provided a proper scaling value for any given Reynolds numbers under turbulent flow conditions.


Sign in / Sign up

Export Citation Format

Share Document